Wide-bandgap (WBG) semiconductor devices are making their way into large-volume applications, including pivotal domains of societal infrastructure such as sustainable energy generation and conversion. Presented for a long time mainly as a synonym of high-temperature electronics, hands-on experience has highlighted a number of gains that can be drawn from this technology even when used as a straightforward drop-in substitute of silicon in established applications and field-proven designs. Incremental in nature, these gains enable interesting progress beyond state-of-the-art forms, which, though not corresponding to the full exploitation of the potential of this technology, are oftentimes sufficient to justify its adoption. With particular reference to renewable energy power conversion and solid-state transformation, in the context of transport applications and incorporating a storage device, this paper reports on the understanding generated over the past few years and points out some specifically tailored technology and circuit design requirements to ensure overall beneficial impact of the adoption of WBG technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.