Hydrogels have been widely investigated as 3D culture substrates because of their reported structural similarity to the extracellular matrix (ECM). Limited ECM deposition, however, occurs within these materials, so the resulting "tissues" bear little resemblance to those found in the body. Here matrix deposition by fibroblasts encapsulated within a calcium alginate (Ca-alg) hydrogel was investigated. Although the cells transcribed mRNA for coll Iα over a period of 3 weeks, very little collagen protein deposition was observed within the gel by histology or immunohistochemistry (IHC). Although molecular diffusion demonstrated charge dependency, this did not prevent the flux of both positively and negative charged amino acids through the gel, suggesting that the absence of ECM could not be attributed to substrate limitation. The flux of protein, however, was charge-dependent as proteins with a net negative charge passed quickly through the Ca-alg into the medium. The minimal collagen deposition within the Ca-alg was attributed to a combination of rapid movement of negatively charged procollagen through the gel and steric hindrance of fibril formation.
Pure β-dicalcium silicate and monocalcium aluminate powder were prepared by Pechini method. A series of calcium silicate/calcium aluminate cements (CSC/CAC) were prepared. The setting time, crystalline phases, microstructures, compressive strength, cells attachment and silicon release of the cements were investigated. The results indicate that the setting time of CSC/CAC was shorter than that of either CSC or CAC. The hydration products in CSC/CAC composite are gehlenite (Ca 2 Al 2 SiO 7 •8H 2 O), calcium aluminate hydrate (Ca 3 Al 2 O 6 × H 2 O), and katoite (Ca 2 Al 2 O 6 •6H 2 O).Platelike crystals were found in the microstructure. The liquid to powder ratio has a significant effect on the porosity and the strength of CSC/CAC. The MC3T3 cells attached well to the surfaces of CSC/CAC. However, the cells proliferation on the surface of 7S3A was better than that of 3S7A due to its higher silicon release. In general, CSC/CAC exhibits good biocompatibility and relative high strength, and may be suitable for some non-load bearing bone restorative applications.
Calcium silicate (CS) is a main component of Portland cement and is responsible for the strength development. Recent research has shown that dicalcium silicate cement (CSC) is bioactive and is a potential candidate for bone replacement. Traditionally, dicalcium silicate powder is synthesized by a solid state reaction or a sol-gel method. The solid-state reaction, however, usually needs a higher temperature and a longer calcination time. Furthermore, the dicalcium silicate powder made by the sol-gel method is not pure, and contains a significant quantity of CaO which is harmful to the strength and biological properties of the CSC. The Pechini technique is an alternative, low temperature polymeric precursor route for synthesis of high purity powders. In this study, purer CS powder was synthesized via the Pechini method by calcination at 800°C for 3h. DSC-TGA, XRD, SEM were used for characterization of CS powder and the hydrated cement. The DSC-TGA curves showed that the main exothermic peak was at 479°C and the total mass loss was 79.2%. The XRD patterns of CSC after hydration for 7, 14, and 35 days illustrated that dicalcium silicate hydrate (Ca1.5SiO3.5·xH2O, C-S-H) was formed in the hardened CS paste. The XRD peaks on the diffraction pattern of the C-S-H of the day 35 sample were of greater intensity than those at day 7 and day 14. This demonstrates that the hydration speed was slow and complete hydration could take more than one month. Flake-like crystals were observed on scanning electron micrographs following hardening. The degradation study result showed that there was no mass loss of CSC after the samples were soaked into phosphate buffered saline (PBS) for 40 days. The silicon assay revealed that orthosilicic acid could be released from CSC after the samples were soaked in simulated body fluid (SBF). Silicon is known to be critical to skeletal mineralization. The existence of silicon may stimulate the proliferation of bone and activate cells to produce bone. Investigation of cell attachment confirmed that the MC-3T3 cells attached well to the surfaces of CSC after seeding.
Type I diabetics are dependent on daily insulin injections. A therapy capable of immunoisolating pancreatic beta-cells and providing normoglycaemia is an alternative since it would avoid the late complications associated with insulin use. Here, 3D-concave agarose micro-wells were used to culture robust pancreatic MIN-6 cell spheroids within 24 hours that were shown to exhibit cell-cell contact and uniform size (201 ± 2 μm). A polyelectrolyte multilayer (PEM) approach using alginate and poly-l-lysine was employed to coat cell spheroids. In comparison to conventional PEM, use of a novel Ca2+ pre-coating step enhanced beta-cells viability (89 ± 6%) and metabolic activity since it reduced the toxic effect of the cationic polymer. Pre-coating was achieved by treating MIN-6 spheroids with calcium chloride, which enabled the adhesion of anionic polymer to the cells surface. Pre-coated cells coated with four bilayers of polymers were successfully immunoisolated from FITC-mouse antibody and pro-inflammatory cytokines. Novel PEM coated cells were shown to secret significantly (P < 0.05) different amounts of insulin in response to changes in glucose concentration (2 vs. 20 mM). This work presents a 3D culture model and novel PEM coating procedure that enhances viability, maintains functionality and immunoisolates beta-cells, which is a promising step towards an alternative therapy to insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.