The major challenge involved in the treatment of inflammatory bowel disease is targeted delivery of the drug at the site of inflammation. As nanoparticles possess the ability to accumulate at the site of inflammation, present investigation aims at development of Budesonide-loaded nanostructured lipid carrier systems (BDS-NLCs) for the treatment of inflammatory bowel disease. BDS-NLCs were prepared by employing a high pressure homogenization technique. Various preliminary trials were performed for optimization of the NLCs in which different processes, as well as formulation parameters, were studied. The BDS-NLCs was optimized statistically by applying a 3-factor/3-level Box-Behnken design. Drug concentration, surfactant concentration, and emulsifier concentration were selected as independent variables, and % entrapment efficiency and particle size were selected as dependent variables. The best batch comprises of 10%, 7%, and 20% w/w concentration of drug, surfactant, and emulsifier, respectively, with % entrapment efficiency of 92.66 ± 3.42% and particle size of 284.0 ± 4.53 nm. Further, in order to achieve effective delivery of nanoparticulate system to colonic region, the developed BDS-NLCs were encapsulated in Eudragit S100-coated pellets. The drug release studies of pellets depict intactness of BDS-NLCs during palletization process, with f value of 75.879. The in vitro evaluation of enteric-coated pellets revealed that a coating level of 15% weight gain is needed in order to impart lag time of 5 h (transit time to reach colon). The results of the study demonstrate that the developed BDS-NLCs could be used as a promising tool for the treatment of inflammatory bowel disease.
The major challenge for the treatment of inflammatory bowel disease (IBD) is the incompetence to deliver the drug molecule selectively at the site of inflammation. Taking this into consideration, we proposed development of mannosylated nanostructured lipid carrier system (Mn-NLCs) for active targeting and site-specific delivery of budesonide to the inflamed tissues. The developed Mn-NLCs were characterized for particle size and size distribution, zeta potential, %entrapment efficiency, FTIR and TEM analysis. Furthermore, to ensure delivery of developed cargo to the colonic region, the Mn-NLCs were encapsulated using Eudragit S100 coated pellets. The in vivo evaluation of developed system was performed by employing oxazolone colitis rat model. The average particle size of Mn-NLCs (301.7 ± 2.88 nm) was found to be more than that of unconjugated NLCs (284.0 ± 4.53 nm) with marginally reduced % entrapment efficiency (90.88 ± 3.86%). The in vitro cytotoxicity studies using J774A.1 cell line revealed that Mn-NLCs were non-toxic as compared to pure drug. The in vivo evaluation depicted that Mn-NLCs showed significant reduction in clinical activity scoring, macroscopic and microscopic indexing, colonic myeloperoxidase activity and inflammatory cytokines. In conclusion, the developed Mn-NLCs appear to be promising for the treatment of IBD by selectively targeting inflamed colonic region as compared to unconjugated nanoparticulate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.