[1] Uncertainties in the quantification of transport properties associated with multiphase flow in porous systems often make the prediction of fluid residence and migration a difficult task. Movement and trapping of immiscible fluids in permeable formations depends upon a complex combination of fluid properties, rock properties, fluid-solid interactions, and forcing conditions. This work consists of using X-rays and visualization techniques to map the distribution of immiscible fluids, particularly trapped oil clusters, residing in a glass bead pack subject to different flow conditions. We analyze the effect of flowing conditions on the evolution of fluid microstructures using X-ray microtomography. Spherical glass beads (0.425-0.600 mm in diameter), a water-wet porous medium, were packed inside a specially designed core holder. High-resolution imaging provides detailed mapping of pore structures resulting from bead packing, and characterization of fluid microstructures formed during sequential water and oil injections. We present spatial distribution of trapped oil clusters for the entire bead pack, as well as mechanistic explanations leading to the fluid configurations observed. We also present simple statistical analyses of blob size, shape, and surface area at the end of different fluid injection cycles. Trapped oil clusters appear in sizes that range from 5.923 × 10 −5 mm 3 to 3.119 × 10 3 mm 3 , where 0.01-0.50 mm 3 clusters are most common. About 98% of the total trapped oil at the end of drainage and imbibition cycles corresponds to blobs that are smaller than 1 mm 3 . It is also shown that most blobs are larger than the mean pore size (0.03 mm 3 ). The mean oil blob size is about 5 times larger than the average pore. A typical blob extends through various interconnected pores, exhibiting elongated of ramified shapes that include multiple voids and constrictions at the same time. The mean aspect ratio of these clusters is less than 2, and the surface area to volume ratio is constant for those larger than 0.1 mm 3 . Experimental methods and findings presented in this paper are expected to lead to powerful calibration mechanisms for multiphase flow models.Citation: Karpyn, Z. T., M. Piri, and G. Singh (2010), Experimental investigation of trapped oil clusters in a water-wet bead pack using X-ray microtomography, Water Resour. Res., 46, W04510,
We consider multirate iterative schemes for the Biot system modelling coupled flow and geomechanics in a poro-elastic medium. The multirate iterative coupling scheme exploits the different time scales for the mechanics and flow problems by taking multiple finer time steps for flow within one coarse mechanics time step. We adapt the fixed stress split algorithm that decouples the flow and mechanics equations for the multirate case and perform an iteration between the two problems until convergence. We provide a fully discrete scheme that uses Backward Euler time discretization and mixed spaces for flow and conformal Galerkin for mechanics. Our analysis is based on studying the equations satisfied by the difference of iterates and using Banach contraction argument to prove that the corresponding scheme is a fixed point contraction. The analysis provides the value of an adjustable coefficient used in the proposed iterative coupling algorithms. Furthermore, we show that the converged quantities satisfy the variational weak form for the coupled discrete system.
Summary A quantitative assessment of hydraulic-fracturing jobs relies on accurate predictions of fracture growth during slickwater injection for single and multistage fracturing scenarios. This requires consistent modeling of underlying physical processes, from hydraulic fracturing to long-term production. In this work, we use a recently introduced phase-field approach to model fracture propagation in a porous medium. This approach is thermodynamically consistent and captures several characteristic features of crack propagation such as joining, branching, and nonplanar propagation as a result of heterogeneous material properties. We describe two different phase-field fracture-propagation models and then present a technique for coupling these to a fractured-poroelastic-reservoir simulator. The proposed coupling approach can be adapted to existing reservoir simulators. We present 2D and 3D numerical tests to benchmark, compare, and demonstrate the predictive capabilities of the fracture-propagation model as well as the proposed coupling scheme.
In this paper the removal of artifacts from ECG signal has been done using two different algorithms , Empirical Mode Decomposition (EMD) andEnsemble Empirical Mode Decomposition (EEMD). The mode mixing problem of EMD is alleviated by adding white noise and ensembling the intrinsic mode functions in case of EEMD. Different types noises were added to the ground truth (GT) signal and comparison has been done in terms of signal to noise ratio(SNR db). MIT-Bm database was used to acquire the ECG signal and noise signals. Correlation coefficients were calculated among different combinations of IMFs and ground truth signal. Reconstruction of denoised ECG signal has been done on the basis of the correlation coefficients. The result shows that the performance of EEMD algorithm is superior than the EMD algorithm.
Mass Spectrometry based Lipid(ome) Analyzer and Molecular Platform (MS-LAMP) is a new software capable of aiding in interpreting electrospray ionization (ESI) and/or matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data of lipids. The graphical user interface (GUI) of this standalone programme is built using Perl::Tk. Two databases have been developed and constituted within MS-LAMP, on the basis of Mycobacterium tuberculosis (M. tb) lipid database (www.mrl.colostate.edu) and that of Lipid Metabolites and Pathways Strategy Consortium (LIPID MAPS; www.lipidmaps.org). Different types of queries entered through GUI would interrogate with a chosen database. The queries can be molecular mass(es) or mass-to-charge (m/z) value(s) and molecular formula. LIPID MAPS identifier also can be used to search but not for M. tb lipids. Multiple choices have been provided to select diverse ion types and lipids. Satisfying to input parameters, a glimpse of various lipid categories and their population distribution can be viewed in the output. Additionally, molecular structures of lipids in the output can be seen using ChemSketch (www.acdlabs.com), which has been linked to the programme. Furthermore, a version of MS-LAMP for use in Linux operating system is separately available, wherein PyMOL can be used to view molecular structures that result as output from General Lipidome MS-LAMP. The utility of this software is demonstrated using ESI mass spectrometric data of lipid extracts of M. tb grown under two different pH (5.5 and 7.0) conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.