Excessive manganese exposure is toxic, but a comprehensive biochemical picture of this assault is poorly understood. Whether oxidative stress or reduced energy metabolism under manganese exposure causes toxicity is still a debate. To address this, we chose Δmnt
P
Escherichia coli, a highly manganese-sensitive strain, in this study. Combining microarray, proteomics, and biochemical analyses, we show that the chronic manganese exposure rewires diverse regulatory and metabolic pathways. Manganese stress affects protein and other macromolecular stability, and envelope biogenesis. Most importantly, manganese exposure disrupts both iron-sulfur cluster and heme-enzyme biogenesis by depleting cellular iron level. Therefore, the compromised function of the iron-dependent enzymes in the tricarboxylic acid cycle, and electron transport chain impede ATP synthesis, leading to severe energy deficiency. Manganese stress also evokes reactive oxygen species, inducing oxidative stress. However, suppressing oxidative stress does not improve oxidative phosphorylation and cell growth. On the contrary, iron supplementation resumed cell growth stimulating oxidative phosphorylation. Therefore, we hypothesize that affected energy metabolism is the primal cause of manganese toxicity.
Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ⌬hflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ⌬hflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ⌬hflX cells. In order to review a possible link of HflX with the phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ⌬hflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ⌬hflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.