Memory bugs are a broad class of bugs that is becoming increasingly common with increasing software complexity, and many of these bugs are also security vulnerabilities. Unfortunately, existing software and even hardware approaches for finding and identifying memory bugs have considerable performance overheads, target only a narrow class of bugs, are costly to implement, or use computational resources inefficiently.This paper describes MemTracker, a new hardware support mechanism that can be configured to perform different kinds of memory access monitoring tasks. MemTracker associates each word of data in memory with a few bits of state, and uses a programmable state transition table to react to different events that can affect this state. The number of state bits per word, the events to which MemTracker reacts, and the transition table are all fully programmable. MemTracker's rich set of states, events, and transitions can be used to implement different monitoring and debugging checkers with minimal performance overheads, even when frequent state updates are needed. To evaluate MemTracker, we map three different checkers onto it, as well as a checker that combines all three. For the most demanding (combined) checker, we observe performance overheads of only 2.7% on average and 4.8% worst-case on SPEC 2000 applications. Such low overheads allow continuous (always-on) use of MemTrackerenabled checkers even in production runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.