ABSTRACT:The melt rheological behavior of calcium silicate-filled isotactic polypropylene, with filler volume contents of 0 -17.8%, was determined at 493 K. The composites followed the power law in shear stress versus shear rate variations and were shear thinning. Initially, apparent melt viscosity decreased until a critical filler volume content of 8.5% was reached. However, on further increase in calcium silicate concentration, apparent melt viscosity increased. Melt elasticity also showed an initial decrease until 8.5% filler content was reached and then an increase beyond this filler content. Surface treatment of calcium silicate with a titanate coupling agent, LICA 38, modified the rheological properties because of the plasticizing/lubricating effect of LICA 38.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.