Industrial process monitoring is an important field of research where different chemical processes are monitored and controlled. In this work, electrical impedance spectroscopy (EIS) was used to analyze antisolvent based crystallization of sucrose solutions. The impedance and phase spectra were recorded for four known sucrose concentrations in water, and for each case, four predetermined amounts of ethanol were added. As a result, sixteen different solutions involving sucrose solutions of different concentrations and ethanol to water ratios were analyzed. Significant differences were observed in the magnitude and phase spectra of the solutions in the frequency range of 50 kHz to 300 kHz. The experimentally obtained data from the EIS were converted into frequency response models. Three continuous-time transfer function models of the first-order, second-order, and a second-order with a zero were estimated and compared. In addition, a 2-D electrical resistance tomography (ERT) system with a low conductivity sensor unit was designed and tested with demineralized water, tap water and industrial food grade saturated sucrose solution. Non-conducting phantom and sugar crystals were observed within the saturated sucrose solution using the Bayesian reconstruction algorithm. These demonstrations have the potential to be developed into a multi-frequency ERT systems for monitoring the distribution of the crystals in the reactor. The EIS modality can be a complementary process analytical technology (PAT) tool indicating supersaturation status and provide quality assurance.
Crystallization is a significant procedure in the manufacturing of many pharmaceutical and solid food products. In-situ electrical resistance tomography (ERT) is a novel process analytical tool (PAT) to provide a cheap and quick way to test, visualize, and evaluate the progress of crystallization processes. In this work, the spatial accuracy of the nonconductive phantoms in low-conductivity solutions was evaluated. Gauss–Newton, linear back projection, and iterative total variation reconstruction algorithms were used to compare the phantom reconstructions for tap water, industrial-grade saturated sucrose solution, and demineralized water. A cylindrical phantom measuring 10 mm in diameter and a cross-section area of 1.5% of the total beaker area was detected at the center of the beaker. Two phantoms with a 10-mm diameter were visualized separately in noncentral locations. The quantitative evaluations were done for the phantoms with radii ranging from 10 mm to 50 mm in demineralized water. Multiple factors, such as ERT device and sensor development, Finite Element Model (FEM) mesh density and simulations, image reconstruction algorithms, number of iterations, segmentation methods, and morphological image processing methods, were discussed and analyzed to achieve spatial accuracy. The development of ERT imaging modality for the purpose of monitoring crystallization in low-conductivity solutions was performed satisfactorily.
In the present research work, an electrical resistance tomography (ERT) system is utilized as a means for real-time fault detection and diagnosis (FDD) during a reactive crystallization process. The calcium carbonate crystallization is part of the carbon capture and utilization scheme where process monitoring and malfunction diagnostics strategies are presented. The graphical logic representation of the fault tree analysis methodology is used to develop the system failure states. The measurement consistency due to the use of a single electrode from a set of ERT electrodes for malfunction identification is experimentally and quantitatively investigated based on the sensor sensitivity and standard deviation criteria. Electrical current measurements are employed to develop a LabVIEW-based process automation program by using the process-specific knowledge and historical process data. Averaged electrical current is correlated to the mechanical failure of the stirrer through standard deviation evaluation, and slopes of the measured data are used to monitor the pump and concentrations status. The performance of the implemented methodology for detecting the induced faults and abnormalities is tested at different operating conditions, and a basic signal-based alarming technique is developed.
In the current research work, electrical resistance tomography (ERT) was employed for crystallization process monitoring and visualization. A first-of-its-kind MATLAB-based interactive GUI application “ERT-Vis” is presented. Two case studies involving varied crystallization methods were undertaken. The experiments involving calcium carbonate reactive (precipitative) crystallization for the high conductivity solution-solute media and the cooling crystallization for sucrose crystallization representing the lower conductivity solution-solute combination were designed and performed. The software successfully provided key insights regarding the process progress in both crystallization systems. It could detect and separate the crystal agglomerations in the low as well as high conductivity solutions using visual analytics tools provided. The performance and utility of the software were studied using a software evaluation case study involving domain experts. Participant feedback indicated that ERT-Vis software helps in reconstructing images instantaneously, interactively visualizing, and evaluating the output of the crystallization process monitoring data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.