Over the past decade, significant research has been done in the area of polymer-mediated gene delivery. Synthesis of new polymers and modifications to existing polymers has resulted in polyplexes with improved in vitro and in vivo transfection efficiencies. Targeting has been an important aspect of this research, and various strategies for obtaining selective and enhanced gene delivery to the target site have been evaluated. This review covers the different aspects involved in polyplex targeting. Development of targeted polyplexes involves a careful consideration of the target site, the targeting ligand and the physicochemical properties of the polyplex itself. The need to redirect the polyplexes by using the 'shield and target' approach by reducing nonspecific interactions with negatively charged components, while conferring specificity by incorporating targeting ligands, is discussed. Basic chemistry involved in modifying polymers is covered and examples of targeting strategies used for tissue-specific gene delivery are discussed. Targeting is also discussed in the broader context of developing safe and effective polymeric vectors for in vivo gene delivery. Maximum benefit of targeting can be obtained when it is used as part of a multi-functional complex containing elements designed to improve gene delivery and reduce overall toxicity of the polyplex.
Polyethylenimine (PEI) was conjugated to phospholipase A(2) (PLA(2)) in an effort to improve transfection efficiency. PLA(2) was conjugated to PEI using EDC as a coupling reagent. The activity of enzyme in the conjugate was measured. DNA condensation ability of the conjugate to polymer was determined. The resultant nanoparticles were characterized by dynamic and electrophoretic light scattering. Two reporter genes were used to evaluate transfection efficiency in human embryonic kidney (HEK293) and human hepatoma (HepG2) cell lines. Conjugate was shown to retain PLA(2) activity and its ability to condense plasmid DNA, resulting in nanoparticles of a similar size to native PEI. The results demonstrated at N/P ratios of 15 and 20 showed 13- and 8-fold increase in transfection efficiency, respectively, compared to the maximum transfection efficiency of PEI (N/P ratio of 5) in the whole range of N/P ratios tested, from 5 to 60 in HepG2 cells. Toxicity studies in HepG2 cells showed uncomplexed conjugate had similar toxicity as PEI, and when complexed with DNA the conjugate had a significantly reduced toxicity. The results clearly indicate the potential for this approach to improve efficiencies of nonviral gene delivery vectors.
Vector development is one of the most important challenges facing the successful use of genes for treatment of diseases. Although chemically produced vectors offer distinct advantages over biological systems such as viruses, there are still some hurdles that have to be overcome before synthetic gene delivery vectors can be successfully implemented. This brief review discusses the biological barriers that limit current delivery strategies and reviews currently employed strategies for plasmid delivery. Nanoparticle-based gene delivery is reviewed along with methods for their characterization, physiochemical properties and toxicity. Finally a prospectus is provided for future development of an ideal synthetic gene delivery vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.