Mussel mooring made mighty by metals Mussels produce an exceptional proteinaceous adhesive so they can withstand waves and currents. Metal ions bound to modified tyrosine residues play an important role in reinforcing the adhesive. Priemel et al . brought together a variety of spectroscopy and microscopy techniques to study the cellular mechanisms involved in adhesive fabrication in mussels (see the Perspective by Wilker). They found that metal ion–rich vesicles are secreted alongside vesicles containing the adhesive protein and mix in a microfluidic-like process within interconnected microchannels found in the lateral duct of the mussel foot to create porous, adhesive plaque filaments. —MAF
<p>To anchor in seashore habitats, mussels fabricate adhesive byssus fibers mechanically reinforced by protein-metal coordination mediated via 3,4-dihydroxyphenylalanine (DOPA) – providing a well-established role model for bio-inspired design of smart metallopolymers and underwater glues. However, currently, the mechanism by which metal ions are integrated as cross-links during byssus formation is completely unknown. Here, we investigated the byssus formation process, combining traditional and advanced methods to identify how and when metals are incorporated into the material. We discovered that mussels concentrate and store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based storage molecules. During thread formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a complex microfluidic-like network of interconnected channels where they coalesce forming protein-metal bonds within the nascent byssus. These insights are important for bio-inspired materials design, but also from a biological and chemical perspective – the active accumulation and utilization of vanadium is extremely rare in nature.</p>
<p>To anchor in seashore habitats, mussels fabricate adhesive byssus fibers mechanically reinforced by protein-metal coordination mediated via 3,4-dihydroxyphenylalanine (DOPA) – providing a well-established role model for bio-inspired design of smart metallopolymers and underwater glues. However, currently, the mechanism by which metal ions are integrated as cross-links during byssus formation is completely unknown. Here, we investigated the byssus formation process, combining traditional and advanced methods to identify how and when metals are incorporated into the material. We discovered that mussels concentrate and store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based storage molecules. During thread formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a complex microfluidic-like network of interconnected channels where they coalesce forming protein-metal bonds within the nascent byssus. These insights are important for bio-inspired materials design, but also from a biological and chemical perspective – the active accumulation and utilization of vanadium is extremely rare in nature.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.