Using a rough path formulation, we investigate existence, uniqueness and regularity for the stochastic Landau-Lifshitz-Gilbert equation with Stratonovich noise on the one dimensional torus. As a main result we show the continuity of the so-called Itô-Lyons map in the energy spaces L ∞ (0, T ; H k )∩L 2 (0, T ; H k+1 ) for any k ≥ 1. The proof proceeds in two steps. First, based on an energy estimate in the aforementioned space together with a compactness argument we prove existence of a unique solution, implying the continuous dependence in a weaker norm. This is then strengthened in the second step where the continuity in the optimal norm is established through an application of the rough Gronwall lemma. Our approach is direct and does not rely on any transformation formula, which permits to treat multidimensional noise. As an easy consequence we then deduce a Wong-Zakai type result, a large deviation principle for the solution and a support theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.