Abstract-The unscented Kalman filter (UKF) has become a popular alternative to the extended Kalman filter (EKF) during the last decade. UKF propagates the so called sigma points by function evaluations using the unscented transformation (UT), and this is at first glance very different from the standard EKF algorithm which is based on a linearized model. The claimed advantages with UKF are that it propagates the first two moments of the posterior distribution and that it does not require gradients of the system model. We point out several less known links between EKF and UKF in terms of two conceptually different implementations of the Kalman filter: the standard one based on the discrete Riccati equation, and one based on a formula on conditional expectations that does not involve an explicit Riccati equation. First, it is shown that the sigma point function evaluations can be used in the classical EKF rather than an explicitly linearized model. Second, a less cited version of the EKF based on a second order Taylor expansion is shown to be quite closely related to UKF. The different algorithms and results are illustrated with examples inspired by core observation models in target tracking and sensor network applications.
The particle filter (PF) has during the last decade been proposed for a wide range of localization and tracking applications. There is a general need in such embedded system to have a platform for efficient and scalable implementation of the PF. One such platform is the graphics processing unit (GPU), originally aimed to be used for fast rendering of graphics. To achieve this, GPUs are equipped with a parallel architecture which can be exploited for general-purpose computing on GPU (GPGPU) as a complement to the central processing unit (CPU). In this paper, GPGPU techniques are used to make a parallel recursive Bayesian estimation implementation using particle filters. The modifications made to obtain a parallel particle filter, especially for the resampling step, are discussed and the performance of the resulting GPU implementation is compared to the one achieved with a traditional CPU implementation. The comparison is made using a minimal sensor network with bearings-only sensors. The resulting GPU filter, which is the first complete GPU implementation of a PF published to this date, is faster than the CPU filter when many particles are used, maintaining the same accuracy. The parallelization utilizes ideas that can be applicable for other applications.
Safety and security applications benefit from better situational awareness. Radar micro-Doppler signatures from an observed target carry information about the target's activity, and have potential to improve situational awareness. This article describes, compares, and discusses two methods to classify human activity based on radar micro-Doppler data. The first method extracts physically interpretable features from the time-velocity domain such as the main cycle time and properties of the envelope of the micro-Doppler spectra and use these in the classification. The second method derives its features based on the components with the most energy in the cadence-velocity domain (obtained as the Fourier transform of the time-velocity domain). Measurements from a field trial show that the two methods have similar activity classification performance. It is suggested that target base velocity and main limb cadence frequency are indirect features of both methods, and that they do often alone suffice to discriminate between the studied activities. This is corroborated by experiments with a reduced feature set. This opens up for designing new more compact feature sets. Also, weaknesses of the methods and the impact of non-radial motion are discussed.
Abstract-Micro-Doppler radar signatures have a great potential for classifying pedestrians and animals, as well as their motion pattern, in a variety of surveillance applications. Due to the many degrees of freedom involved, real data needs to be complemented with accurate simulated radar data to successfully be able to design and test radar signal processing algorithms. In many cases, the ability to collect real data is limited by monetary and practical considerations, whereas in a simulated environment any desired scenario may be generated. Motion capture has been used in several works to simulate the human micro-Doppler signature measured by radar; however, validation of the approach has only been done based on visual comparisons of micro-Doppler signatures. This work validates and, more importantly, extends the exploitation of motion capture data not just to simulate micro-Doppler signatures but also to use the simulated signatures as a source of a priori knowledge to improve the classification performance of real radar data, especially in the case when the total amount of data is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.