Transcription factors (TFs) mediate gene regulation by site specific binding to chromosomal operators. It is commonly assumed that the level of repression is given by the equilibrium binding of a repressor to its operator alone. However, this assumption has not been possible to test in living cells. Here, we have developed a single molecule chase assay to measure how long an individual transcription factor molecule remains bound at a specific chromosomal operator site. We find that the lac repressor dimer stays bound on average 5 minutes at the native lac operator in Escherichia coli and that a stronger operator results in slower dissociation rate, but similar association rate. Our findings do not support the simple equilibrium model. The discrepancy can for example be accounted for by considering that transcription initiation drives the system out of equilibrium. Such effects need to be considered when predicting gene activity from TF binding strengths.
We have developed a method combining microfluidics, time-lapsed single-molecule microscopy and automated image analysis allowing for the observation of an excess of 3000 complete cell cycles of exponentially growing
Escherichia coli
cells per experiment. The method makes it possible to analyse the rate of gene expression at the level of single proteins over the bacterial cell cycle. We also demonstrate that it is possible to count the number of non-specifically DNA binding LacI–Venus molecules using short excitation light pulses. The transcription factors are localized on the nucleoids in the cell and appear to be uniformly distributed on chromosomal DNA. An increase in the expression of LacI is observed at the beginning of the cell cycle, possibly because some gene copies are de-repressed as a result of partitioning inequalities at cell division. Finally, a size–growth rate uncertainty relation is observed where cells living in rich media vary more in the length at birth than in generation time, and the opposite is true for cells living in poorer media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.