Circulating cell-free tumor DNA (ctDNA) is a promising biomarker in cancer. Ultrasensitive technologies enable detection of low (< 0.1%) mutant allele frequencies, a pre-requisite to fully utilize the potential of ctDNA in cancer diagnostics. In addition, the entire liquid biopsy workflow needs to be carefully optimized to enable reliable ctDNA analysis. Here, we discuss important considerations for ctDNA detection in plasma. We show how each experimental step can easily be evaluated using simple quantitative PCR assays, including detection of cellular DNA contamination and PCR inhibition. Furthermore, ctDNA assay performance is also demonstrated to be affected by both DNA fragmentation and target sequence. Finally, we show that quantitative PCR is useful to estimate the required sequencing depth and to monitor DNA losses throughout the workflow. The use of quality control assays enables the development of robust and standardized workflows that facilitate the implementation of ctDNA analysis into clinical routine.
As the number of elderly persons with complex health needs is increasing, teams for their care have been recommended as a means of meeting these needs, particularly in the case of elderly persons with multi-diseases. Occupational therapists, in their role as team members, exert significant influence in guiding team recommendations. However, it has been emphasized that there is a lack of sound research to show the impact of teamwork from the perspective of elderly persons. The aim of this paper was to explore literature concerning multidisciplinary teams that work with elderly persons living in the community. The research method was a systematic literature review and a total of 37 articles was analysed. The result describes team organisation, team intervention and outcome, and factors that influence teamwork. Working in a team is multifaceted and complex. It is important to enhance awareness about factors that influence teamwork. The team process itself is also of great importance. Clinical implications for developing effective and efficient teamwork are also presented and discussed.
BackgroundUpper limb coordination in persons post-stroke may be estimated by the commonly used Finger-to-Nose Test (FNT), which is also part of the Fugl-Meyer Assessment. The total movement time (TMT) is used as a clinical outcome measure, while kinematic evaluation also enables an objective quantification of movement quality and motor performance. Our aims were to kinematically characterize FNT performance in persons post-stroke and controls and to investigate the construct validity of the test in persons with varying levels of impairment post-stroke.MethodsA three-dimensional motion capture system recorded body movements during performance of the FNT in 33 persons post-stroke who had mild or moderate upper limb motor impairments (Fugl-Meyer scores of 50–62 or 32–49, respectively), and 41 non-disabled controls. TMT and kinematic variables of the hand (pointing time, peak speed, time to peak speed, number of movement units, path ratio, and pointing accuracy), elbow/shoulder joints (range of motion, interjoint coordination), and scapular/trunk movement were calculated. Our analysis focused on the pointing phase (knee to nose movement of the FNT). Independent t or Mann-Whitney U tests and effect sizes were used to analyze group differences. Sub-group analyses based on movement time and stroke severity were performed. Within the stroke group, simple and multiple linear regression were used to identify relationships between TMT to kinematic variables.ResultsThe stroke group had significant slower TMT (mean difference 2.6 s, d = 1.33) than the control group, and six other kinematic variables showed significant group differences. At matched speeds, the stroke group had lower accuracy and excessive scapular and trunk movements compared to controls. Pointing time and elbow flexion during the pointing phase were most related to stroke severity. For the stroke group, the number of movement units during the pointing phase showed the strongest association with the TMT, and explained 60% of the TMT variance.ConclusionsThe timed FNT discriminates between persons with mild and moderate upper limb impairments. However, kinematic analysis to address construct validity highlights differences in pointing movement post-stroke that are not captured in the timed FNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.