The hematopoietic neutral serine proteases leukocyte elastase and cathepsin G are synthesized as inactive precursors, but become activated by removal of an amino-terminal dipeptide and are stored in granules. Moreover, the pro forms of elastase and cathepsin G show carboxyl-terminal prodomains of 20 and 11 amino acids, respectively, which are not present in the mature enzymes. To investigate mechanisms of processing, activation, and granular targeting, we have utilized transgenic expression of myeloid serine proteases in the rat basophilic/mast cell line RBL-1 (Gullberg, U., Lindmark, A., Nilsson, E., Persson, A.-M., and Olsson, I. (1994) J. Biol. Chem. 269, 25219-25225). Leukocyte elastase was stably expressed in RBL-1 cells, and the translation products were characterized by biosynthetic labeling followed by immunoprecipitation, SDS-polyacrylamide gel electrophoresis, and fluorography. Processing of a main pro form of 34 kDa into mature 31- and 29-kDa forms was demonstrated. Translocation of mature forms to granule-containing fractions was shown by subcellular fractionation experiments. The processed forms were enzymatically active, judging by the occurrence of amino-terminal processing demonstrated by radiosequence analysis, the acquisition of affinity for the protease inhibitor aprotinin, and the appearance of elastase activity in transfected RBL cells. To investigate the function of the carboxyl-terminal prodomains, deletion mutants of leukocyte elastase and cathepsin G lacking the carboxyl-terminal extension were constructed and transfected into RBL cells. Our results show that as full-length proteins, the deletion mutants were converted to active enzymes and transferred to granules with kinetics similar to that of wild-type enzymes. We conclude that human leukocyte elastase and cathepsin G are converted into enzymatically active forms when expressed in RBL cells and targeted for storage in granules; the carboxyl-terminal prodomains are necessary neither for enzymatic activation nor for targeting to granules in RBL cells.
An efficient method is introduced in this paper to compute the dispersion characteristics as well as the Poynting flux distribution of radially stratified fibers. Only 4 x 4 matrix operations were needed. Detailed results are given for several representative radially inhomogeneous fibers of practical interest.
We study the local ionic conductivity of ferroelectric domain walls and domains in KTiOPO4 single-crystals. We show a fourfold increase in conductivity at the domain walls, compared to that of the domains, attributed to an increased concentration of defects. Our current-voltage measurements reveal memristive-like behavior associated with topographic changes and permanent charge displacement. This behavior is observed for all the voltage sweep-rates at the domain walls, while it only occurs for low frequencies at the domains. We attribute these findings to the redistribution of ions due to the applied bias and their effect on the tip-sample barrier.
We present an efficient and flexible method to realize micro- and nano-optical structures on the tip of optical fibers. We demonstrate this approach for a fiber-tip sensor consisting of a photonic crystal (PhC) structure in a semiconductor membrane on the cleaved facet of a telecom fiber. The PhC structure is fabricated on a wafer by lithography and etching and then transferred to the fiber facet by a simple mechanical pickup process through an opening in the substrate, without the need for adhesives or a micromanipulator. Due to its reliability, scalability, and the use of wafer-scale fabrication methods, this process increases the possibilities for fiber-tip applications at the industrial level. With the fabricated fiber tip sensors, we demonstrate sensing of the refractive index and temperature, with resonance wavelength shifts of 120 nm/RIU and 95 pm/K, respectively.
The coupling between ionic degrees of freedom and ferroelectricity has received renewed attention in recent years, given that surface electrochemical processes have been shown to be intrinsically linked to ferroelectric phase stability in ultrathin ferroelectric films. However, the coupling between bulk ionic transport and local polarization switching has received less attention, as typically the bulk ionic mobilities are low for common ferroelectrics at room temperature. Here, we use the coupled band-excitation method in conjunction with site-correlated time-of-flight secondary ion mass spectrometry, to determine the coupling between ferroelectric switching and ionic motion in single crystal KTiOPO. The local scanning probe measurements indicate a substantial softening, as determined by resonant frequency changes, during reversal of polarization along one direction. These changes are correlated with the mass spectrometry measurements, showing a polarization-dependent accumulation of K ions at the polar surfaces, thus corroborating their role in the screening process. These studies shed light on the interplay between ionic dynamics and bulk ferroelectric switching and have implications for studies on domain wall conductivity, chemical switching, and bulk and surface-screening phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.