We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia. Intracellular NAMPT and NAD(+) amounts in myeloid cells, as well as plasma NAMPT and NAD(+) levels, were increased by G-CSF treatment of both healthy volunteers and individuals with congenital neutropenia. NAMPT administered both extracellularly and intracellularly induced granulocytic differentiation of CD34(+) hematopoietic progenitor cells and of the promyelocytic leukemia cell line HL-60. Treatment of healthy individuals with high doses of vitamin B3 (nicotinamide), a substrate of NAMPT, induced neutrophilic granulocyte differentiation. The molecular events triggered by NAMPT include NAD(+)-dependent sirtuin-1 activation, subsequent induction of CCAAT/enhancer binding protein-alpha and CCAAT/enhancer binding protein-beta, and, ultimately, upregulation of G-CSF synthesis and G-CSF receptor expression. G-CSF, in turn, further increases NAMPT levels. These results reveal a decisive role of the NAD(+) metabolic pathway in G-CSF-triggered myelopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.