Magnetic tracking is a popular technique that exploits static and lowfrequency magnetic fields for positioning of quasi-stationary objects. One important system design aspect, which substantially influences the performance of the tracking system, is how to collect as much information as possible with a given number of measurements. In this work, we optimize the allocation of measurements given a large number of possible measurements of a generic magnetic tracking system that exploits time-division multiplexing. We exploit performance metrics based on the Fisher information matrix. In particular, the performance metrics measure worstcase or average performance in a measurement domain, i.e. the domain where the tracking is to be performed. An optimization problem with integer variables is formulated. By relaxing the constraint that the variables should be integer, a convex optimization problem is obtained. The two performance metrics are compared for several realistic measurement scenarios with planar transmitter constellations. The results show that the worst performance is obtained in the most distant parts of the measurement domain. Furthermore, measurement allocations optimized for worstcase performance require measurements in a larger area than measurement allocations optimized for average performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.