Summary
Zika virus (ZIKV) infects fetal and adult human brain, and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV infected patients. We performed a high content chemical screen using human embryonic stem cell derived cortical neuron progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ), can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.
A spectrum of neurological disorders characterized by abnormal neuronal migration, differentiation, and axon guidance and maintenance have recently been attributed to missense mutations in the genes that encode α– and β-tubulin isotypes TUBA1A, TUBA8, TUBB2B, and TUBB3, all of which putatively co-assemble into neuronal microtubules. The resulting nervous system malformations can include different types of cortical malformations, defects in commissural fiber tracts, and degeneration of motor and sensory axons. Many clinical phenotypes and brain malformations are shared among the various mutations regardless of structural location and/or isotype, while others segregate with distinct amino acids or functional domains within tubulin. Collectively, these disorders provide novel paradigms for understanding the biological functions of microtubules and their core components in normal health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.