NMDA and TRPV1 receptors that are expressed in sensory neurons have been independently demonstrated to play important roles in peripheral pain mechanisms. In the present study, we investigated whether the two receptor-channel systems form a functional complex that provides the basis for the development of mechanical hyperalgesia. In the masseter muscle, direct application of NMDA induced a time dependent increase in mechanical sensitivity, which was significantly blocked when the muscle was pretreated with a specific TRPV1 antagonist, AMG9810. The NR1 subunit of the NMDA receptor and TRPV1 were co-expressed in 32% of masseter afferents in trigeminal ganglia (TG). Furthermore, NR1 and NR2B formed protein-protein complexes with TRPV1 in TG as demonstrated by co-immunoprecipitation experiments. Calcium imaging analyses further corroborated that NMDA and TRPV1 receptors functionally interact. In TG culture, application of NMDA resulted in phosphorylation of serine, but not threonine or tyrosine, residues of TRPV1 in a time course similar to that of the development of NMDA-induced mechanical hyperalgesia. The NMDA-induced phosphorylation was significantly attenuated by CaMKII and PKC inhibitors, but not by a PKA inhibitor. Consistent with the biochemical data, the NMDA-induced mechanical hyperalgesia was also effectively blocked when the muscle was pretreated with a CaMKII or PKC inhibitor. Thus, NMDA receptors and TRPV1 functionally interact via CaMKII and PKC signaling cascades and contribute to mechanical hyperalgesia. These data offer novel mechanisms by which two ligand-gated channels in sensory neurons interact and reinforce the notion that TRPV1 functions as a “signal integrator” under pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.