The hexasaccharide β-D-Galp-(1→2)-[β-D-Galp-(1→3)]-β-D-Galp-(1→6)-[β-D-Galf(1→2)-β-D-Galf(1→4)]-D-GlcNAc (1) is the largest carbohydrate structure released as alditol by reductive β-elimination from mucins of some strains of T. cruzi. The terminal β-D-Galp units are sites of sialylation by trans-sialidase which transfers sialic acid from the host to the parasite. Hexasaccharide 1 was synthesized by a [3 + 3]-convergent strategy based on a nitrile assisted glycosylation, using the trichloroacetimidate method. The β-D-Galf-(1→2)-β-D-Galf-D-GlcNAc synthon was sequentially constructed from the reducing end to the non-reducing end employing benzyl α-D-galactofuranoside as starting material for the internal Galf unit. The choice of this novel precursor, obtained in one-reaction step from galactose, allowed the introduction of an orthogonal and participating levulinoyl group at O-2. Thus, the diastereoselective construction of the Galf-β(1→4)-GlcNAc linkage by the trichloroacetimidate method of glycosylation was achieved. The (1)H NMR spectrum of alditol 2 was identical to the product released by β-elimination from the parasite mucin.
Background Trypanosoma cruzi , the agent of Chagas disease, is a protozoan parasite transmitted to humans by blood-sucking triatomine vectors. However, and despite its utmost biological and epidemiological relevance, T . cruzi development inside the digestive tract of the insect remains a poorly understood process. Methods/Principle findings Here we showed that Gp35/50 kDa mucins, the major surface glycoproteins from T . cruzi insect-dwelling forms, are involved in parasite attachment to the internal cuticle of the triatomine rectal ampoule, a critical step leading to its differentiation into mammal-infective forms. Experimental evidence supporting this conclusion could be summarized as follows: i) native and recombinant Gp35/50 kDa mucins directly interacted with hindgut tissues from Triatoma infestans , as assessed by indirect immunofluorescence assays; ii) transgenic epimastigotes over-expressing Gp35/50 kDa mucins on their surface coat exhibited improved attachment rates (~2–3 fold) to such tissues as compared to appropriate transgenic controls and/or wild-type counterparts; and iii) certain chemically synthesized compounds derived from Gp35/50 kDa mucins were able to specifically interfere with epimastigote attachment to the inner lining of T . infestans rectal ampoules in ex vivo binding assays, most likely by competing with or directly blocking insect receptor(s). A solvent-exposed peptide (smugS peptide) from the Gp35/50 kDa mucins protein scaffolds and a branched, Gal f -containing trisaccharide (Gal f β1–4[Gal p β1–6]GlcNAcα) from their O -linked glycans were identified as main adhesion determinants for these molecules. Interestingly, exogenous addition of a synthetic Gal f β1–4[Gal p β1–6]GlcNAcα derivative or of oligosaccharides containing this structure impaired the attachment of Dm28c but not of CL Brener epimastigotes to triatomine hindgut tissues; which correlates with the presence of Gal f residues on the Gp35/50 kDa mucins’ O -glycans on the former but not the latter parasite clone. Conclusion/Significance These results provide novel insights into the mechanisms underlying T . cruzi- triatomine interplay, and indicate that inter-strain variations in the O -glycosylation of Gp35/50 kDa mucins may lead to differences in parasite differentiation and hence, in parasite transmissibility to the mammalian host. Most importantly, our findings point to Gp35/50 kDa mucins and/or the Gal f ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.