Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects BRCA1 mutation carriers and young women of African origin. There is evidence that African-American women with TNBC have worse clinical outcomes than women of European descent. However, it is unclear whether survival differences persist after adjusting for disparities in access to health-care treatment, co-morbid disease and income. It remains controversial whether TNBC in African-American women is a molecularly distinct disease or whether African-American women have a higher incidence of aggressive biology driven by disparities: there is evidence in support of both. Understanding the relative contributions of biology and disparities is essential for improving the poor survival rate of African-American women with TNBC.
Estrogen deficiency in menopause is a major cause of osteoporosis in women. Estrogen acts to maintain the appropriate ratio between bone-forming osteoblasts and bone-resorbing osteoclasts in part through the induction of osteoclast apoptosis. Recent studies have suggested a role for Fas ligand (FasL) in estrogen-induced osteoclast apoptosis by an autocrine mechanism involving osteoclasts alone. In contrast, we describe a paracrine mechanism in which estrogen affects osteoclast survival through the upregulation of FasL in osteoblasts (and not osteoclasts) leading to the apoptosis of pre-osteoclasts. We have characterized a cell-type-specific hormone-inducible enhancer located 86 kb downstream of the FasL gene as the target of estrogen receptor-alpha induction of FasL expression in osteoblasts. In addition, tamoxifen and raloxifene, two selective estrogen receptor modulators that have protective effects in bone, induce apoptosis in pre-osteoclasts by the same osteoblast-dependent mechanism. These results demonstrate that estrogen protects bone by inducing a paracrine signal originating in osteoblasts leading to the death of pre-osteoclasts and offer an important new target for the prevention and treatment of osteoporosis.
Wnt/β-catenin signalling has been suggested to be active in basal-like breast cancer. However, in highly aggressive metastatic triple-negative breast cancers (TNBC) the role of β-catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active β-catenin in human TNBC and predicts survival-outcome of patients with both TNBC and basal-like tumours. We provide evidence that transgenic murine Wnt10b-driven tumours are devoid of ERα, PR and HER2 expression and can model human TNBC. Importantly, HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost, suggesting a developmentally conserved mode of action. Mechanistically, ChIP analysis uncovered that WNT10B activates canonical β-catenin signalling leading to up-regulation of HMGA2. Treatment of mouse and human triple-negative tumour cells with two Wnt/β-catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2, which is necessary and sufficient for proliferation of TNBC cells. Furthermore, HMGA2 expression predicts relapse-free-survival and metastasis in TNBC patients.
NFκB is a family of transcription factors involved in immunity and the normal functioning of many tissues. It has been well studied in osteoclasts, and new data indicate an important role for NFκB in the negative regulation of bone formation. In this article, we discuss how NFκB activation affects osteoblast function and bone formation. In particular, we describe how reduced NFκB activity in osteoblasts results in an increase in bone formation via enhanced c-Jun N-terminal kinase (JNK) activity, which regulates FOSL1 (also known as Fra1) expression. Furthermore, we discuss how estrogen and NFκB crosstalk in osteoblasts acts to oppositely regulate bone formation. Future NFκB-targeting treatments for osteoporosis, rheumatoid arthritis and other inflammatory bone diseases could lead to increased bone formation concurrent with decreased bone resorption.
Wnt10b is a canonical Wnt ligand expressed in developing bone and has been linked to mesenchymal progenitor functions in mice and humans. Because Wnt signaling has been shown to play an important role in progenitor maintenance in a variety of adult tissues, we examined bone deposition and growth rates throughout postnatal development in Wnt10b-null mice. Using bone histomorphometry and micro–computed tomographic (µCT) studies, we demonstrate that trabecular bone deposition is slightly enhanced in Wnt10b-null mice at 1 month of age, followed by progressive loss with age. Importantly, we find that Wnt10b is required for maintenance of adult bone density in multiple backgrounds of inbred mice and that both copies of the Wnt10b gene are required to maintain normal bone density in 6-month-old animals. We go on to show that the loss in trabecular bone in Wnt10b-null mice is associated with a reduction in the number of bone marrow–derived mesenchymal progenitors (MPCs) using in vitro colony-forming unit assays and marker analysis. Analysis of osteogenic gene expression in primary bone marrow stromal cells demonstrated reductions in expression of several osteoblast differentiation markers. Taken together, our results indicate that Wnt10b is uniquely required for maintenance of mesenchymal progenitor activity in adult bone. The results show the significance of studying individual Wnt ligands and their potentially unique contribution in the context of aging and disease. © 2010 American Society for Bone and Mineral Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.