The intensification of extreme precipitation in a warming climate is expected to increase flood risk. In order to support flood resilience efforts, it is important to anticipate and quantify potential changes in design standards under future climate conditions. This study assessed how extreme precipitation is expected to change over the 21st century in relation to current National Oceanic and Atmospheric Administration (NOAA) Atlas 14 design standards over the contiguous United States (CONUS). We used the Community Earth System Model Version 2 large ensemble (CESM2‐LE) simulations from the Coupled Model Intercomparison Project Phase 6 and incorporated future changes into flood engineering design standard with a spatially distributed quantile delta mapping method. Relative changes in extreme daily precipitation were computed for multiple average recurrence intervals (ARIs) up to 100‐year and different planning horizons (2020, 2040, 2060, 2080, and 2100). The results indicated an intensification of extreme precipitation by approximately 10%–40% in northern regions and 20%–80% in southern regions by 2100. The current 100‐year ARI with 24‐hr duration from NOAA Atlas 14 is projected to become the 50‐year ARI in the Northern Great Plains, less than the 25‐year ARI in Southwest areas, and approximately the 25‐year ARI in the other regions by 2100. While a nationwide consensus is still needed, this work presents a possible methodology for incorporating climate uncertainty in engineering design. A comparison across major metropolitan areas also illustrates regional variability in projected changes relative to NOAA Atlas 14, suggesting a need for varied local‐scale responses.
Vulnerability of coastal regions to extreme events motivates an operational coupled inland‐coastal modeling strategy focusing on the coastal transition zone (CTZ), an area between the coast and upland river. To tackle this challenge, we propose a top‐down framework for investigating the contribution of different processes to the hydrodynamics of CTZs with various geometrical shapes, different physical properties, and under several forcing conditions. We further propose a novel method, called tidal vanishing point (TVP), for delineating the extent of CTZs through the upland. We demonstrate the applicability of our framework over the United States East and Gulf coasts. We categorize CTZs in the region into three classes, namely, without estuary (direct river–coast connection), triangular‐, and trapezoidal‐shaped estuary. The results show that although semidiurnal tidal constituents are dominant in most cases, diurnal tidal constituents become more prevalent in the river segment as the discharge increases. Also, decreasing the bed roughness value promotes more significant changes in the results than increasing it by the same value. Additionally, the estuary promotes tidal energy attenuation and consequently decreases the reach of tidal signals through the upland. The proposed framework is generic and extensible to any coastal region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.