DNA rich in unmethylated CG motifs (CpGs) engage Toll-Like Receptor 9 (TLR-9) in endosomes and are well described stimulators of the innate and adaptive immune system. CpGs therefore can efficiently improve vaccines' immunogenicity. Packaging CpGs into nanoparticles, in particular into virus-like particles (VLPs), improves the pharmacological characteristics of CpGs as the protein shell protects them from DNAse activity and delivers the oligomers to the endosomal compartments of professional antigen presenting cells (APCs). The current consensus in packaging and delivering CpGs in VLP-based vaccines is that both adjuvants and antigens should be kept in close proximity (i.e. physically linked) to ensure delivery of antigens and adjuvants to the same APCs. In the current study, we harness the draining properties of the lymphatic system and show that also non-linked VLPs are efficiently co-delivered to the same APCs in lymph nodes. Specifically, we have shown that CpGs can be packaged in one VLP and mixed with another VLP displaying the antigen prior to administration in vivo. Both VLPs efficiently reached the same draining lymph node where they were taken up and processed by the same APCs, namely dendritic cells and macrophages. This resulted in induction of specific CTLs producing cytokines and killing target cells in vivo at levels seen when using VLPs containing both CpGs and chemically conjugated antigen. Thus, delivery of antigens and adjuvants in separate nanoparticles eliminates the need of physical conjugation and thus can be beneficial when designing precision medicine VLP-based vaccines or help to re-formulate existing VLP vaccines not naturally carrying immunostimulatory sequences.
Background Induction of strong T cell responses, in particular cytotoxic T cells, is a key for the generation of efficacious therapeutic cancer vaccines which yet, remains a major challenge for the vaccine developing world. Here we demonstrate that it is possible to harness the physiological properties of the lymphatic system to optimize the induction of a protective T cell response. Indeed, the lymphatic system sharply distinguishes between nanoscale and microscale particles. The former reaches the fenestrated lymphatic system via diffusion, while the latter either need to be transported by dendritic cells or form a local depot. Methods Our previously developed cucumber-mosaic virus-derived nanoparticles termed (CuMV TT -VLPs) incorporating a universal Tetanus toxoid epitope TT830–843 were assessed for their draining kinetics using stereomicroscopic imaging. A nano-vaccine has been generated by coupling p33 epitope as a model antigen to CuMV TT -VLPs using bio-orthogonal Cu-free click chemistry. The CuMV TT -p33 nano-sized vaccine has been next formulated with the micron-sized microcrystalline tyrosine (MCT) adjuvant and the formed depot effect was studied using confocal microscopy and trafficking experiments. The immunogenicity of the nanoparticles combined with the micron-sized adjuvant was next assessed in an aggressive transplanted murine melanoma model. The obtained results were compared to other commonly used adjuvants such as B type CpGs and Alum. Results Our results showed that CuMV TT -VLPs can efficiently and rapidly drain into the lymphatic system due to their nano-size of ~ 30 nm. However, formulating the nanoparticles with the micron-sized MCT adjuvant of ~ 5 μM resulted in a local depot for the nanoparticles and a longer exposure time for the immune system. The preclinical nano-vaccine CuMV TT -p33 formulated with the micron-sized MCT adjuvant has enhanced the specific T cell response in the stringent B16F10p33 murine melanoma model. Furthermore, the micron-sized MCT adjuvant was as potent as B type CpGs and clearly superior to the commonly used Alum adjuvant when total CD8 + , specific p33 T cell response or tumour protection were assessed. Conclusion The combination of nano- and micro-particles may optimally harness the physiological properties of the lymphatic system. Since the nanoparticles are well defined virus-like particles and the micron-sized adjuvant MCT has been used for decades in allergen-specific desensitization, this approach may readily be translated to the clinic. Electronic supplementary material The online version of this article (10.1186/s40425-019-0587-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.