The hosts for Antricola delacruzi ticks are insectivorous, cave-dwelling bats on which only larvae are found. The mouthparts of nymphal and adult A. delacruzi are compatible with scavenging feeding because the hypostome is small and toothless. How a single blood meal of a larva provides energy for several molts as well as for oviposition by females is not known. Adults of A. delacruzi possibly feed upon an unknown food source in bat guano, a substrate on which nymphal and adult stages are always found. Guano produced by insectivorous bats contains twice the amount of protein and 60 times the amount of iron as beef. In addition, bacteria and chitin-rich fungi proliferate on guano. Comparative data on the transcriptome of the salivary glands of A. delacruzi is nonexistent and would help to understand the physiological adaptations of salivary glands that accompany different sources of food as well as the steps taken by the Acari towards haematophagy, believed to have evolved from scavenging dead animals. Annotation of the transcriptome of salivary glands from female instars of A. delacruzi collected on guano categorized 5.7% of the clusters of expressed genes as putative secreted proteins. They included abundantly expressed TIL domain-containing proteins (possible anti-microbials), an abundantly expressed protein similar to a serum amyloid found in the sialotranscriptomes of Ornithodoros spp., a savignygrin, a family of mucin/peritrophin/cuticle-like proteins, antimicrobials and an HIV envelope-like glycoprotein also found in soft ticks. When comparing the transcriptome of A. delacruzi with those of blood-feeding female soft and hard ticks some notable differences were observed; they consisted of the following transcripts over- or under-represented or absent in the sialotranscriptome of A. delacuzi that may reflect its source of food: ferritin, mucins with chitin-binding domains and TIL domain-containing proteins versus lipocalins, basic tail proteins, metalloproteases, glycine-rich proteins and Kunitz protease inhibitors, respectively.
Combined myocardial analysis of the extent and location of autonomic denervation, hypoperfusion, and scarring may allow for better understanding of the pathophysiology of Chagas cardiomyopathy. Autonomic myocardial denervation may be a more sensitive marker of cardiac involvement in Chagas Disease than finding by other imaging modalities.
The relationship between the myocardial tissue damage, myocardial perfusion defects and gaps in the autonomic innervation is still poorly understood. This paper proposes methods capable of providing an integrated visualization and analysis of tissue injuries through MRI images, autonomic innervations and myocardial perfusion through SPECT images. The proposed method is based on segmentation of MRI and registration between MRI images and SPECT images using 123 I-MIBG and 99m Tc-MIBI as tracers. Fibrosis segmentation in MRI images was performed based on the algorithm of maximum Tsallis entropy. Nonrigid registrations method based on B-Spline were used to align image volumes. Results show correlation between fibrosis and denervation areas in the middle short axis was obtained by Spearman correlation (r=0.571,p-value<0.05). The developed tool provides a better understanding of the relationship between myocardial tissue damage, autonomic innervations injuries and ischemia caused by Chagas disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.