Pathogenic bacteria are gaining resistance to conventional antibiotics at an alarming rate due to overuse and rapid transfer of resistance genes between bacterial populations. As bacterial resistance to antibiotics causes millions of fatalities worldwide, it is of urgent importance to develop a new class of antibiotic materials with both broad-spectrum bactericidal activity and suitable biocompatibility. Graphene derivatives are rapidly emerging as an extremely promising class of antimicrobial materials due to their diverse bactericidal mechanisms and relatively low cytotoxicity towards mammalian cells. By combining graphene derivatives with currently utilized antibacterial metal and metal-oxide nanostructures, composite materials with exceptional bactericidal activity can be achieved. In this review, the antibacterial activities of graphene derivatives as well as their metal and metal-oxide composite nanostructures will be presented. The synthetic methodology for these various materials will be briefly mentioned, and emphasis will be placed on the evaluation of their mechanisms of action. This information will provide a valuable insight into the current understanding of the interactions governing the microbial toxicity of graphene-based composite nanostructures.
Synthesis of new, highly active antibacterial agents has become increasingly important in light of emerging antibiotic resistance. In the present study, ZnO/graphene quantum dot (GQD) nanocomposites were produced by a facile hydrothermal method and characterized by an array of microscopic and spectroscopic measurements, including transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis and photoluminescence spectroscopy. Antibacterial activity of the ZnO/GQD nanocomposites was evaluated with Escherichia coli within the context of minimum inhibitory concentration and the reduction of the number of bacterial colonies in a standard plate count method, in comparison to those with ZnO and GQD separately. It was found that the activity was markedly enhanced under UV photoirradiation as compared to that in ambient light. This was ascribed to the enhanced generation of reactive oxygen species under UV photoirradiation, with minor contributions from membrane damage, as manifested in electron paramagnetic resonance and fluorescence microscopic measurements. The results highlight the significance of functional nanocomposites based on semiconductor nanoparticles and graphene derivatives in the development of effective bactericidal agents.
Graphene
derivatives have been attracting extensive interest as
effective antimicrobial agents. In the present study, ternary nanocomposites
are prepared based on graphene oxide quantum dots (GOQD), polyaniline
(PANI), and manganese oxides. Because of the hydrophilic GOQD and
PANI, the resulting GPM nanocomposites are readily dispersible in
water and upon photoirradiation at 365 nm exhibit antimicrobial activity
toward both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus epidermidis (S. epidermidis). Notably, the nanocomposite with a high Mn2+ and Mn4+ content is found to be far more active than that with a
predominant Mn3+ component, although both samples feature
a similar elemental composition and average Mn valence state. The
bactericidal activity is largely ascribed to the photocatalytic production
of hydroxy radicals and photogenerated holes; both are known to exert
oxidative stress on bacterial cells. Further antimicrobial contributions
may arise from the strong affinity of the nanocomposites to the cell
surfaces. These results suggest that the metal valence state may be
a critical parameter in the design and engineering of high-performance
antimicrobial agents based on metal oxide nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.