Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar and (iii) stationary increment processes. They are the natural multivariate generalizations of the well-studied fractional Brownian motions. Because of the possible lack of time-reversibility, the defining properties (i)-(iii) do not, in general, characterize the covariance structure of OFBMs. To circumvent this problem, the class of OFBMs is characterized here by means of their integral representations in the spectral and time domains. For the spectral domain representations, this involves showing how the operator self-similarity shapes the spectral density in the general representation of stationary increment processes. The time domain representations are derived by using primary matrix functions and taking the Fourier transforms of the deterministic spectral domain kernels. Necessary and sufficient conditions for OFBMs to be time-reversible are established in terms of their spectral and time domain representations. It is also shown that the spectral density of the stationary increments of an OFBM has a rigid structure, here called the dichotomy principle. The notion of operator Brownian motions is also explored.
Operator fractional Brownian motion (OFBM) is the natural vector-valued extension of the univariate fractional Brownian motion. Instead of a scalar parameter, the law of an OFBM scales according to a Hurst matrix that affects every component of the process. In this paper, we develop the wavelet analysis of OFBM, as well as a new estimator for the Hurst matrix of bivariate OFBM. For OFBM, the univariate-inspired approach of analyzing the entry-wise behavior of the wavelet spectrum as a function of the (wavelet) scales is fraught with difficulties stemming from mixtures of power laws. The proposed approach consists of considering the evolution along scales of the eigenstructure of the wavelet spectrum. This is shown to yield consistent and asymptotically normal estimators of the Hurst eigenvalues, and also of the coordinate system itself under assumptions. A simulation study is included to demonstrate the good performance of the estimators under finite sample sizes.
In this contribution, we extend the methodology proposed in Abry and Didier (2017a) to obtain the first joint estimator of the real parts of the Hurst eigenvalues of n-variate OFBM. The procedure consists of a wavelet regression on the log-eigenvalues of the sample wavelet spectrum. The estimator is shown to be consistent for any time reversible OFBM and, under stronger assumptions, also asymptotically normal starting from either continuous or discrete time measurements. Simulation studies establish the finite sample effectiveness of the methodology and illustrate its benefits compared to univariate-like (entrywise) analysis. As an application, we revisit the well-known self-similar character of Internet traffic by applying the proposed methodology to 4-variate time series of modern, high quality Internet traffic data. The analysis reveals the presence of a rich multivariate self-similarity structure.
Abstract. While scale invariance is commonly observed in each component of real world multivariate signals, it is also often the case that the inter-component correlation structure is not fractally connected, i.e., its scaling behavior is not determined by that of the individual components. To model this situation in a versatile manner, we introduce a class of multivariate Gaussian stochastic processes called Hadamard fractional Brownian motion (HfBm). Its theoretical study sheds light on the issues raised by the joint requirement of entry-wise scaling and departures from fractal connectivity. An asymptotically normal wavelet-based estimator for its scaling parameter, called the Hurst matrix, is proposed, as well as asymptotically valid confidence intervals. The latter are accompanied by original finite sample procedures for computing confidence intervals and testing fractal connectivity from one single and finite size observation. Monte Carlo simulation studies are used to assess the estimation performance as a function of the (finite) sample size, and to quantify the impact of omitting wavelet cross-correlation terms. The simulation studies are shown to validate the use of approximate confidence intervals, together with the significance level and power of the fractal connectivity test. The test performance and properties are further studied as functions of the HfBm parameters.
Operator fractional Brownian motions (OFBMs) are zero mean, operator self-similar (o.s.s.), Gaussian processes with stationary increments. They generalize univariate fractional Brownian motions to the multivariate context. It is well-known that the so-called symmetry group of an o.s.s. process is conjugate to subgroups of the orthogonal group. Moreover, by a celebrated result of Hudson and Mason, the set of all exponents of an operator self-similar process can be related to the tangent space of its symmetry group.In this paper, we revisit and study both the symmetry groups and exponent sets for the class of OFBMs based on their spectral domain integral representations. A general description of the symmetry groups of OFBMs in terms of subsets of centralizers of the spectral domain parameters is provided. OFBMs with symmetry groups of maximal and minimal types are studied in any dimension. In particular, it is shown that OFBMs have minimal symmetry groups (as thus, unique exponents) in general, in the topological sense. Finer classification results of OFBMs, based on the explicit construction of their symmetry groups, are given in the lower dimensions 2 and 3. It is also shown that the parametrization of spectral domain integral representations are, in a suitable sense, not affected by the multiplicity of exponents, whereas the same is not true for time domain integral representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.