In this paper we study a general eigenvalue problem for the so called (p, 2)-Laplace operator on a smooth bounded domain Ω ⊂ ℝN under a nonlinear Steklov type boundary condition, namely
\[\left\{ \begin{aligned} -\Delta_pu-\Delta u & =\lambda a(x)u \quad {\rm in}\ \Omega,\\ (|\nabla u|^{p-2}+1)\dfrac{\partial u}{\partial\nu} & =\lambda b(x)u \quad {\rm on}\ \partial\Omega . \end{aligned} \right.\]
For positive weight functions a and b satisfying appropriate integrability and boundedness assumptions, we show that, for all p>1, the eigenvalue set consists of an isolated null eigenvalue plus a continuous family of eigenvalues located away from zero.
Abstract. We prove existence of two nonconstant exponentially stable equilibria to the heat equation supplied with a nonlinear Neumann boundary condition in any smooth n-dimensional domain (n ≥ 2), independently of its geometry. The Neumann boundary condition reflects the fact that the flux on the boundary is proportional to the product of a prescribed bistable function of the density or concentration with an indefinite weight. Such solutions are obtained via variational methods, by minimizing the corresponding energy functional on suitable invariant sets to the semiflow generated by the parabolic problem. But this is possible only if the parameter in the boundary condition is sufficiently large, otherwise we prove using the Implicit Function Theorem the uniqueness of constant equilibrium solutions. The same theorem allows us to derive isolation and smooth dependence on the parameter for nonconstant exponentially stable equilibria found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.