Heat shock proteins (HSPs) are evolutionary conserved proteins that work as molecular chaperones and perform broad and crucial roles in proteostasis, an important process to preserve the integrity of proteins in different cell types, in health and disease. Their function in cancer is an important aspect to be considered for a better understanding of disease development and progression. Glioblastoma (GBM) is the most frequent and lethal brain cancer, with no effective therapies. In recent years, HSPs have been considered as possible targets for GBM therapy due their importance in different mechanisms that govern GBM malignance. In this review, we address current evidence on the role of several HSPs in the biology of GBMs, and how these molecules have been considered in different treatments in the context of this disease, including their activities in glioblastoma stem-like cells (GSCs), a small subpopulation able to drive GBM growth. Additionally, we highlight recent works that approach other classes of chaperones, such as histone and mitochondrial chaperones, as important molecules for GBM aggressiveness. Herein, we provide new insights into how HSPs and their partners play pivotal roles in GBM biology and may open new therapeutic avenues for GBM based on proteostasis machinery.
Background: The use of probiotics positively modifies the composition and function of intestinal flora, improving the quality of intestinal anastomosis. Aim: To evaluate the impact of probiotic use on intestinal anastomosis of rats. Method: Thirty-six adult male Wistar rats (Rattus norvegicus albinus, Rodentia Mammalia) were used, with body weight ranging from 220-320 g. The animals were housed and acclimated individually in boxes receiving water and ration ad libitum. After initial acclimatization, the control group received perioperative ration ad libitum for 12 days (seven preoperatively and five postoperatively) associated with the maltodextrin formula at a dose of 250 mg/day in isocaloric and isovolumetric form. Likewise, the probiotic group received oral supplementation of probiotics dose of 250 mg/day, associated with isocaloric and isovolumetric diet. The probiotic chosen for this study was composed of strains (doses 1x109 CFU/g)12 Lactobacillus paracasei LPC-37, Bifidobacterium lactis HN0019, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM. Probiotics or placebo were administered orally with the aid of a dosimeter spatula. Both groups underwent two colostomies, one in the right colon and the second in rectosigmoid, followed by reanastomosis with eight separate 6-0 mononylon stitches. The sacrifice took place on the fifth day. The parameters evaluated included tensile strength, histology and collagen densitometry. Results: The rate of intestinal fistula for the control and probiotic groups were, respectively, 22.22% and 11.11% (p=0.6581).Perioperative supplementation with probiotics increased collagen deposition of types I and III (p<0.0001), improved maximum traction force and maximum rupture force, p=0.0250 and p=0.0116 respectively, fibrosis area (p<0.0001), and area of the inflammatory infiltrate (p=0.0115). Conclusions: The use of probiotics had a positive impact on the quality of intestinal anastomosis.
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.