Abstract:In situ turbidity meters are being increasingly used to generate continuous records of suspended sediment concentration in rivers. However, the usefulness of the information obtained depends heavily on the existence of a close relationship between fluctuations in suspended sediment concentration and turbidity and the calibration procedure that relates suspended sediment concentration to the turbidity meter's signal. This study assesses the relationship between suspended sediment concentration and turbidity for a small (1Ð19 km 2 ) rural catchment in southern Brazil and evaluates two calibration methods by comparing the estimates of suspended sediment concentration obtained from the calibrated turbidity readings with direct measurements obtained using a USDH 48 suspended sediment sampler. With the first calibration method, the calibration relationship is derived by relating the turbidity readings to simultaneous measurements of concentration obtained from suspended sediment samples collected from the vicinity of the turbidity probe during flood events. With the second method, the calibration is based on the readings obtained from the turbidity meter when the probe immersed in samples of known concentration prepared using soils collected from the catchment. Overall, there was a close link between fluctuations in suspended sediment concentration and turbidity in the stream at the outlet of the catchment, and the estimates of sediment concentration obtained using the first calibration method corresponded closely with the conventionally measured sediment concentrations. However, use of the second calibration method introduced appreciable errors. When the estimated sediment concentrations were compared with the measured values, the mean errors were š122 mg l 1 and C601 mg l 1 for the first and second calibration procedures respectively.
Abstract:Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year
À1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km 2 to nearly 2 million km 2 and annual suspended sediment fluxes ranging from about 4 Kt year À1 to about 200 Mt year À1 . The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sedimentassociated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross-sectionally representative data. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.