The coronavirus disease 2019 (COVID-19) is the latest biological hazard for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous diagnostic tests for SARS-CoV-2 have been proposed, new diagnosis strategies are being developed, looking for less expensive methods to be used as screening. This study aimed to establish salivary vibrational modes analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to detect COVID-19 biological fingerprints that allow the discrimination between COVID-19 and healthy patients. Clinical dates, laboratories, and saliva samples of COVID-19 patients (N = 255) and healthy persons (N = 1209) were obtained and analyzed through ATR-FTIR spectroscopy. Then, a multivariate linear regression model (MLRM) was developed. The COVID-19 patients showed low SaO2, cough, dyspnea, headache, and fever principally. C-reactive protein, lactate dehydrogenase, fibrinogen, d-dimer, and ferritin were the most important altered laboratory blood tests, which were increased. In addition, changes in amide I and immunoglobulin regions were evidenced in the FTIR spectra analysis, and the MLRM showed clear discrimination between both groups. Specific salivary vibrational modes employing ATR-FTIR spectroscopy were established; moreover, the COVID-19 biological fingerprint in saliva was characterized, allowing the COVID-19 detection using an MLRM, which could be helpful for the development of new diagnostic devices.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, affecting more than 219 countries and causing the death of more than 5 million people worldwide. The genetic background represents a factor that predisposes the way the host responds to SARS-CoV-2 infection. In this sense, genetic variants of ACE and ACE2 could explain the observed interindividual variability to COVID-19 outcomes. In order to improve the understanding of how genetic variants of ACE and ACE2 are involved in the severity of COVID-19, we included a total of 481 individuals who showed clinical manifestations of COVID-19 and were diagnosed by reverse transcription PCR (RT-PCR). Genomic DNA was extracted from peripheral blood and saliva samples. ACE insertion/deletion polymorphism was evaluated by the high-resolution melting method; ACE single-nucleotide polymorphism (SNP) (rs4344) and ACE2 SNPs (rs2285666 and rs2074192) were genotyped using TaqMan probes. We assessed the association of ACE and ACE2 polymorphisms with disease severity using logistic regression analysis adjusted by age, sex, hypertension, type 2 diabetes, and obesity. The severity of the illness in our study population was divided as 31% mild, 26% severe, and 43% critical illness; additionally, 18% of individuals died, of whom 54% were male. Our results showed in the codominant model a contribution of ACE2 gene rs2285666 T/T genotype to critical outcome [odds ratio (OR) = 1.83; 95%CI = 1.01–3.29; p = 0.04] and to require oxygen supplementation (OR = 1.76; 95%CI = 1.01–3.04; p = 0.04), in addition to a strong association of the T allele of this variant to develop critical illness in male individuals (OR = 1.81; 95%CI = 1.10–2.98; p = 0.02). We suggest that the T allele of rs2285666 represents a risk factor for severe and critical outcomes of COVID-19, especially for men, regardless of age, hypertension, obesity, and type 2 diabetes.
Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.