Non-small cell lung cancer (NSCLC) has a poor prognosis and improved therapies are needed. Expression of EphA2 is increased in NSCLC metastases. In this study, we investigated EphA2 mutations in NSCLC and examined molecular pathways involved in NSCLC. Tumor and cell line DNA was sequenced. One EphA2 mutation was modeled by expression in BEAS2B cells, and functional and biochemical studies were conducted. A G391R mutation was detected in H2170 and 2/28 squamous cell carcinoma patient samples. EphA2 G391R caused constitutive activation of EphA2 with increased phosphorylation of Src, cortactin, and p130 Cas . Wild-type (WT) and G391R cells had 20 and 40% increased invasiveness; this was attenuated with knockdown of Src, cortactin, or p130 Cas . WT and G391R cells demonstrated a 70% increase in focal adhesion area. Mammalian target of rapamycin (mTOR) phosphorylation was increased in G391R cells with increased survival (55%) compared with WT (30%) and had increased sensitivity to rapamycin. A recurrent EphA2 mutation is present in lung squamous cell carcinoma and increases tumor invasion and survival through activation of focal adhesions and actin cytoskeletal regulatory proteins as well as mTOR. Further study of EphA2 as a therapeutic target is warranted.Lung cancer is the leading cause of cancer death in the United States (1) and is a growing health epidemic worldwide (2). Metastatic lung cancer is virtually incurable. Even when lung cancer is detected early and aggressive intervention is undertaken, its outcome remains disappointing. Patients with completely resected Stage I non-small cell lung cancer (NSCLC) 2 have a 5-year overall survival of 55-70% (3-5). Locoregional and, more commonly, distant recurrence limits the curative potential of surgery.The Eph receptor family represents the largest group of receptor tyrosine kinases (6). The Eph receptors are divided into EphA and EphB based on structural homology and ligandbinding affinity. In all, there are 16 Eph receptors (Eph A1-A10 and B1-B6), but humans lack EphA9 and EphB5 (7). The ligands for the Eph receptors are ephrins (7). The ephrins fall into two subclasses, ephrin-A and -B, based on their mode of membrane attachment and receptor affinity. The physiologic role of Eph receptors is crucial in embryonic developmental processes, such as cell migration, vascular development, tissueborder formation, axonal and synaptic network development, and adult processes such as regulation of neuronal plasticity (7). A peculiarity of the Eph-ephrin system is that signals are transduced by both the receptor (forward signaling) and ligand (reverse signaling) (7).EphA2 is overexpressed in glioblastoma (8), breast (9, 10), colon (9, 11), ovarian (12), pancreatic (13), and prostate (14) cancer. EphA2 is overexpressed (staining intensity 2ϩ/3ϩ) in 70% of NSCLC (15). This receptor promotes cell proliferation (16), motility (16, 17), invasion (8), metastasis (18, 19), and angiogenesis (20) in malignant tumors. Furthermore, somatic mutations in the Eph (EphA3 and -A5) family ha...
BackgroundNon-small cell lung cancer (NSCLC) is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET), and functionality in NSCLC.Methods and FindingsUsing archival formalin-fixed paraffin embedded (FFPE) extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH) for the c-CBL locus (22%, n = 8/37) and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively) transfected in NSCLC cell lines, there was increased cell viability and cell motility.ConclusionsTaking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.
Despite progress in locoregional and systemic therapies, patient survival from lung cancer remains a challenge. Receptor tyrosine kinases are frequently implicated in lung cancer pathogenesis, and some tyrosine kinase inhibition strategies have been effective clinically. The EphB4 receptor tyrosine kinase has recently emerged as a potential target in several other cancers. We sought to systematically study the role of EphB4 in lung cancer. Here, we demonstrate that EphB4 is overexpressed 3-fold in lung tumors compared to paired normal tissues and frequently exhibits gene copy number increases in lung cancer. We also show that overexpression of EphB4 promotes cellular proliferation, colony formation, and motility, while EphB4 inhibition reduces cellular viability in vitro, halts the growth of established tumors in mouse xenograft models when used as a single-target strategy, and causes near-complete regression of established tumors when used in combination with paclitaxel. Taken together, these data suggest an important role for EphB4 as a potential novel therapeutic target in lung cancer. Clinical trials investigating the efficacy of anti-EphB4 therapies as well as combination therapy involving EphB4 inhibition may be warranted.
Myeloid sarcoma (MS) of the central nervous system (CNS) is a rare presentation of leukemic mass infiltration outside of the bone marrow. It may involve the subperiosteum and dura mater and, on rare occasions, can also invade the brain parenchyma. The disease is most commonly seen in children or young adults; however, it has been described in multiple age groups. MS can be seen in patients with acute myeloid leukemia (AML), chronic myeloid leukemia and other myeloproliferative disorders. This entity has the potential to be underdiagnosed if the MS appearance precedes the first diagnosis of leukemia. The main reason is that their appearance on CT and MRI has a broad differential diagnosis, and proper diagnosis of MS can only be made if the imaging findings are correlated with the clinical history and laboratory findings. Herein, we describe the intracranial CNS manifestations of MS in patients with AML on CT and MRI involving the brain and/or meninges. This study is based on a systematic review of the literature. In addition, three case reports from the author’s institution with AML and intracranial involvement of MS are included. Our aim is to enhance the awareness of this entity among both clinicians and radiologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.