The influence of surface chemistry and boron doping density on the redox chemistry of Fe(CN) 3À=4À 6 at CVD polycrystalline diamond electrodes is considered. It is demonstrated that for this couple both the doping density and the surface chemistry are important in determining the rate of charge transfer at the electrode/electrolyte interface. For hydrogen terminated CVD diamond metallic electrochemical behavior is always observed, even at boron doping densities as low as 7 Â 10 18 cm
À3. In contrast, the electrochemical behavior of oxygen terminated CVD diamond varies with doping density, a metallic response being observed at high doping density and semiconductor behavior at low doping density. It is shown that the results attained may be explained by a surface state mediated charge transfer mechanism, thus demonstrating the importance of controlling surface chemistry in electroanalytical applications of diamond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.