Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.
The relationship between microstructure and mechanical properties has been investigated in Argiope trifasciata dragline silk fibers (major ampullate silk, MAS) by X-ray diffraction, Raman spectroscopy and tensile testing. We have analyzed three fractions of the material, i.e. amorphous, highly oriented nanocrystals and weakly oriented material, for different values of the macroscopic alignment parameter a, calculated as the relative difference between the length of the fiber and its length when supercontracted. Two distinct regimes have been identified: for low values of the alignment parameter a, microstructural changes are dominated by the reorientation of the nanocrystals; however, at high values (a > 0.5) of the alignment parameter, an increase in the fraction of the crystalline phase is revealed. The two regimes are also reflected in the mechanical behaviour, which can be explained by microstructural changes. This finding of the two distinct regimes in the microstructural evolution, which separates the reorientation and the increase in the crystalline phase, will be valuable to develop and validate molecular models of natural and artificial silk fibers, as well as to deepen our present knowledge of the origin of the outstanding properties of MAS fibers. In addition, we have analyzed the characteristics of the crystal lattice, and discussed the relationship between the percentage of short sidechain residues and the unit cell dimensions in different silks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.