Hydraulic machines are faced with increasingly severe performance requirements. The need to design smaller and more powerful machines rotating at higher speeds in order to provide increasing efficiencies has to face a major limitation: cavitation. The problem is inherently three-dimensional, due to the axial clearances, the relief and circumferential grooves, and to the circular pipes through which the fluid enters and exits the pump. A simplified two-dimensional numerical approach by means of computational fluid dynamics (CFD) has been developed for studying the effect of cavitation in the volumetric efficiency of external gear pumps. The assumptions employed prevent from predicting realistic values of the volumetric efficiency, but show to be valid to understand the complex flow patterns that take place inside the pump and to study the influence of cavitation on volumetric efficiency. A method for simulating the contact between solid boundaries by imposing changes in viscosity has been developed. Experiments of unsteady cavitation in water and oil performed by other authors have been numerically reproduced using different cavitation models in order to select the most appropriate one and to adjust its parameters. The influence of the rotational speed of the pump has been analyzed. Cavitation in the suction chamber very effectively damps the water hammer associated to the sudden change of the contact point position at the end of the gearing cycle. At high rotational speeds, the volume of air becomes more stable, reducing the flow irregularity. When cavitation takes place at the meshing region downstream from the contact point, the volume of air that appears acts as a virtual second contact point, increasing the volumetric efficiency of the pump.
Recently several works have been published on numerical simulation of an external gear pump (EGP). Such kinds of pumps are simple and relatively inexpensive, and are frequently used in fluid power applications, such as fluid power in aeronautical, mechanical, and civil engineering. Nevertheless, considerable effort is being undertaken to improve efficiency and reduce noise and vibration produced by the flow and pressure pulsations. Numerical simulation of an EGP is not straightforward principally for two main reasons. First, the gearing mechanism between gears makes it difficult to handle a dynamic mesh without a considerable deterioration of mesh quality. Second, the dynamic metal–metal contact simulation is important when high pressure outflow has to be reproduced. The numerical studies published so far are based on a two-dimensional (2D) approximation. The aim of the present work is to contribute to the understanding of the fluid flow inside an EGP by means of a complete three-dimensional (3D) parallel simulation on a cluster. The 3D flow is simulated in a linux cluster with a solver developed with the openfoam Toolbox. The hexahedral mesh quality is maintained by periodically replacing the mesh and interpolating the physical magnitudes fields. The meshing contact point is simulated with the viscous wall approach, using a viscosity model based on wall proximity. The results for the flow rate ripples show a similar behavior to that obtained with 2D simulations. However, the flow presents important differences inside the suction and the discharge chambers, principally in the regions of the pipes' connection. Moreover, the decompression slot below the gearing zone, which can not be simulated with a 2D approximation, enables a more realistic simulation of a contact ratio greater than 1. The results are compared with experimental measurements recently published.
A gerotor pump, which is widely used in the automotive industry for engine oil lubrication, produces an instantaneous flow fluctuation and the estimation of this is fundamental in order to evaluate the pump quality for silent and smooth operation. The intricate aspects of the pumping process of a gerotor pump make computational fluid dynamics the appropriate tool for modelling and simulation to provide insights into its flow characteristics. Because the instantaneous flow is rather dependent on the teeth contact, a new boundary condition of a virtual wall was developed, which allows simulation of the teeth contact in the interteeth radial clearances. This new boundary condition is utilized in a three-dimensional model of the gerotor pump with mesh deformation and remeshing at every time step by means of a home-made ad-hoc code programmed by the present authors and named viscous wall cell. The code has been integrated into the computational fluid dynamics solver. The interteeth clearances are studied under the following different operating conditions (working pressures and rotational velocities): first, no contact points (no teeth contact is studied in order to prove that, even if the interteeth radial clearance is sufficiently small, the leakage cannot be negligible); second, all contact points (the ideal approach is considered with zero interteeth radial clearances used to model zero manufacturing tolerances); third, one contact point at different locations (the existence of manufacturing tolerances and the teeth contact approach make the pump’s operation and its pumping mechanism more realistic in the simulation). The numerical instantaneous flow is compared with the analytical instantaneous flow, with the instantaneous flow modelled by using the bond graph technique, and with the experimental determination of the flow ripple for a specific unit. The results obtained show the importance of simulating the teeth contact and prove to be an excellent estimation of the instantaneous flow behaviour to obtain the dynamic properties of a gerotor pump under more realistic conditions than its design.
A new approach based on the open source tool OpenFOAM is presented for the numerical simulation of a mini gerotor pump working at low pressure. The work is principally focused on the estimation of leakage flow in the clearance disk between pump case and gears. Two main contributions are presented for the performance of the numerical simulation. On one hand, a contact point viscosity model is used for the simulation of solid–solid contact between gears in order to avoid the teeth tip leakage. On the other hand, a new boundary condition has been implemented for the gear mesh points motion in order to keep the mesh quality while moving gears with relative velocity. Arbitrary coupled mesh interface (ACMI) has been used both in the interface between clearance disk in inlet/outlet ports and between clearance disk and interteeth fluid domain. Although the main goal of the work is the development of the numerical method rather than the study of the physical analysis of the pump, results have been compared with experimental measurement and a good agreement in volumetric efficiency and pressure fluctuations has been found. Finally, the leakage flow in the clearance disk has been analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.