A new sorbent material based on modified clay with ionic liquid immobilized into an agarose film was developed as part of this study. It was applied to determine organochlorine pollutants, like disinfection byproducts, through headspace solid-phase microextraction-gas chromatography-electron capture detection (HS-SPME-GC-ECD). The disinfection byproducts determined in this study were used as model molecules because they were volatile compounds, with proven severe effects on human health. Their presence in aquatic environments is in trace concentrations (from pg L−1 to mg L−1). They are classified as emergent pollutants and their determination is a challenge for analytical chemists. The parameters which affected the extraction efficiency, i.e., number and distance between SPME discs, salt concentration, the temperature of extraction, extraction time, and desorption time, were optimized. A wide linear dynamic range of 10–1000 ng mL−1 and coefficients of determination better than 0.997 were achieved. The limits of detection and the limits of quantitation were found in the ranges of (1.7–3.7) ng mL−1 and (5.6–9.9) ng mL−1, respectively. The precision, expressed as relative standard deviation (RSD), was better than 8%. The developed sorbent exhibits good adsorption affinity. The applicability of the proposed methodology for the analysis of trihalomethanes in environmental and water samples showed recoveries in the range of 86–95%. Finally, the newly created method fully complied with the principles of green chemistry. Due to the fact that the sorbent holder was made of agarose, which is a wholly biodegradable material, sorbent clay is a widespread material in nature. Moreover, the reagents intercalated into the montmorillonite are new green solvents, and during the whole procedure, low amounts of organic solvents were used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.