We put forward a completely redesigned approach to soft set based decision making problems under incomplete information. An algorithmic solution is proposed and compared with previous approaches in the literature. The computational performance of our algorithm is critically analyzed by an experimental study.
The linear Diophantine fuzzy set (LDFS) has been proved to be an efficient tool in expressing decision maker (DM) evaluation values in multicriteria decision-making (MCDM) procedure. To more effectively represent DMs’ evaluation information in complicated MCDM process, this paper proposes a MCDM method based on proposed novel aggregation operators (AOs) under linear Diophantine fuzzy set (LDFS). A
q
-Rung orthopair fuzzy set (
q
-ROFS), Pythagorean fuzzy set (PFS), and intuitionistic fuzzy set (IFS) are rudimentary concepts in computational intelligence, which have diverse applications in modeling uncertainty and MCDM. Unfortunately, these theories have their own limitations related to the membership and nonmembership grades. The linear Diophantine fuzzy set (LDFS) is a new approach towards uncertainty which has the ability to relax the strict constraints of IFS, PFS, and
q
–ROFS by considering reference/control parameters. LDFS provides an appropriate way to the decision experts (DEs) in order to deal with vague and uncertain information in a comprehensive way. Under these environments, we introduce several AOs named as linear Diophantine fuzzy Einstein weighted averaging (LDFEWA) operator, linear Diophantine fuzzy Einstein ordered weighted averaging (LDFEOWA) operator, linear Diophantine fuzzy Einstein weighted geometric (LDFEWG) operator, and linear Diophantine fuzzy Einstein ordered weighted geometric (LDFEOWG) operator. We investigate certain characteristics and operational laws with some illustrations. Ultimately, an innovative approach for MCDM under the linear Diophantine fuzzy information is examined by implementing suggested aggregation operators. A useful example related to a country’s national health administration (NHA) to create a fully developed postacute care (PAC) model network for the health recovery of patients suffering from cerebrovascular diseases (CVDs) is exhibited to specify the practicability and efficacy of the intended approach.
On the basis of Hamacher operations, in this manuscript, we interpret bipolar complex fuzzy Hamacher weighted average (BCFHWA) operator, bipolar complex fuzzy Hamacher ordered weighted average (BCFHOWA) operator, bipolar complex fuzzy Hamacher hybrid average (BCFHHA) operator, bipolar complex fuzzy Hamacher weighted geometric (BCFHWG) operator, bipolar complex fuzzy Hamacher ordered weighted geometric (BCFHOWG) operator, and bipolar complex fuzzy Hamacher hybrid geometric (BCFHHG) operator. We present the features and particular cases of the above-mentioned operators. Subsequently, we use these operators for methods that can resolve bipolar complex fuzzy multiple attribute decision making (MADM) issues. We provide a numerical example to authenticate the interpreted methods. In the end, we compare our approach with existing methods in order to show its effectiveness and practicality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.