This work presents a novel multi-structure power converter capable of generating high current pulses with short rise and fall times, and high precision in the flat-top. The proposed topology is based on the use of three conversion structures operated with current, voltage and switching frequency ratings in line with the different requirements of each pulse stage.
At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.
AbstractAt CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.
This work presents the analysis of a two-quadrant regulator connected to the DC-link of a 4-quadrant magnet supply. The key objective is to present some regulation strategies for controlling the peak power required from the power network as well as to recover the magnet energy into capacitor banks. A comparative study that highlights the trade o_ between the size of reactive elements, and the peak current drawn from the electrical network is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.