This paper presents a data set with information on meteorological data and electricity consumption in the department of Alto Paraná, Paraguay. The meteorological data were registered every three hours at the Aeropuerto Guarani, Department of Alto Paraná, which belongs to the Dirección Nacional de Aeronáutica Civil of Paraguay. The final data consists of a total of 22.445 records of temperature, relative humidity, wind speed and atmospheric pressure. On the other hand, the electrical energy consumption data set contains a total of 1.848.947 records, all of them coming from the one hundred and fifteen feeders located throughout the Alto Paraná region of Paraguay. Electrical energy consumption data was provided by Administración Nacional de Electricidad (ANDE). The analysis of this data can yield insights regarding the energy consumption in the area.
Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.
The discovery and description of patterns in electric energy consumption time series is fundamental for timely management of the system. A bicluster describes a subset of observation points in a time period in which a consumption pattern occurs as abrupt changes or instabilities homogeneously. Nevertheless, the pattern detection complexity increases with the number of observation points and samples of the study period. In this context, current bi-clustering techniques may not detect significant patterns given the increased search space. This study develops a parallel evolutionary computation scheme to find biclusters in electric energy. Numerical simulations show the benefits of the proposed approach, discovering significantly more electricity consumption patterns compared to a state-of-the-art non-parallel competitive algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.