Pemilahan cacat biji kopi merupakan proses yang sangat penting untuk menjaga serta meningkatkan kualitas produksi, melihat kopi sebagai salah satu komoditas paling penting yang diperjual belikan. Penulis ingin meminimalisir kesalahan klasifikasi oleh manusia yang subjektif dengan mengimplementasi metode Naive Bayes untuk melakukan klasifikasi cacat biji kopi secara objektif. Biji kopi difoto sehingga menghasilkan citra biji kopi, ruang warna HSV digunakan untuk melakukan ekstraksi ciri warna biji, dan tekstur biji kopi diekstrak dengan metode GLCM. Pengujian terhadap model klasifikasi yang dibangun dengan 68 data latih menghasilkan akurasi 94.44% berdasarkan 36 data uji. Hasil akurasi menunjukkan ketika ada 36 data uji maka 2 data salah diklasifikasi atau ketika ada 100 data uji maka 5 hingga 6 biji akan salah diklasifikasi oleh model. Penelitian selanjutnya disarankan untuk melakukan pengamatan yang lebih dalam untuk mendapatkan fitur ciri yang dapat merepresentasikan perbedaan cacat pada biji dengan lebih representative, serta membandingkan metode klasifikasi Naive Bayes dengan metode klasifikasi lain untuk mendapatkan model klasifikasi yang lebih baik di masa depan.
Universities play a role in improving the quality of education, they are expected to have human resources who do not engage in cyberloafing deviant behavior. The purpose of this study is to explain the effect of role ambiguity and work stress on cyberloafing and the mediation of work stress on role ambiguity in cyberloafing. The research subjects were education personnel with a sample of 280 people. Determination of the sample using the simple random sampling method. Data were analyzed by SEM. The results showed that role ambiguity had no significant effect on cyberloafing. Work stress has a significant positive effect on cyberloafing. Role ambiguity has a significant positive effect on work stress. Role ambiguity in cyberloafing is mediated by work stress. This study provides theoretical implications by enriching the empirical evidence. Practical implications for use in policies to suppress cyberloafing. Suggestions for management to suppress cyberloafing by clarifying work objectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.