The Human Development Index is a critical indicator of economic growth. Several factors, including average length of schooling (X1), expected length of schooling (X2), life expectancy at birth (X3), number of health workers (X4), number of health facilities (X5), spending per capita (X6), open unemployment rate (X7), number of poor people (X8), percentage of households with proper drinking water sources (X9), and GRDP growth rate (X10), can influence the Human Development Index. The purpose of this research was to simplify the factors that influence the human development index in Riau Province in 2021. Data analysis used R-Studio software by applying descriptive statistical analysis, Principal Component analysis, and Biplot analysis. The analysis revealed that the ten variables that influence human development index in Riau in 2021 can be divided into three categories: community service quality, health facilities, access, and economic conditions. These three factors can describe up to 80% of the diversity of the data.
Machine learning methods can be used to generate climate change models. The goal of this study is to use logistic regression machine learning algorithms to classify data on greenhouse gas emissions. The data used is climate change data of several countries obtained from The World Bank, with total greenhouse gas emissions as the response variable and 61 other attributes as explanatory variables. This data is preprocessed using min-max normalization to handle unbalanced ranges, and then the data is split into 70% training data and 30% testing data. Based on the logistic regression modeling, it was discovered that the data from the min-max transformation resulted in better modeling than the data modeling without the transformation process. The accuracy, precision, sensitivity, and specificity of the transformation are 87.60%, 87.76%, 87.04%, and 88.14%, respectively
Poverty is an enormous problem in numerous nations including Indonesia. Poverty can be measured using several indicators, including the unemployment rate, the percentage of poor people, expenditures per capita, and the poverty line. The purpose of this study is to categorize Indonesian provinces based on poverty indicators in 2021 using K-Means with the Silhouette Coefficient approach. Based on the silhouette coefficient approach, there are two clusters that are created. The first cluster is a high-poverty-rate regional group that includes the provinces of Aceh, Bengkulu, West Nusa Tenggara, East Nusa Tenggara, Central Sulawesi, Gorontalo, Maluku, West Papua, and Papua. On the other hand, the second cluster is an association of regions with a low poverty rate, and it includes 25 provinces. The greater number of provinces in the low poverty rate cluster implies that the poverty rate in Indonesia in 2021 is included in the low category
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.