Attraction between the atoms of a Bose-Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms can be stabilized by confinement in an atom trap. However, beyond this number the condensate collapses. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion. Here we report the formation of bright solitons of (7)Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose-Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion.
We report the observation of pairing in a gas of atomic fermions with unequal numbers of two components. Beyond a critical polarization, the gas separates into a phase that is consistent with a superfluid paired core surrounded by a shell of normal unpaired fermions. The critical polarization diminishes with decreasing attractive interaction. For near-zero polarization, we measured the parameter beta = -0.54 +/- 0.05, describing the universal energy of a strongly interacting paired Fermi gas, and found good agreement with recent theory. These results are relevant to predictions of exotic new phases of quark matter and of strongly magnetized superconductors.
We report the attainment of simultaneous quantum degeneracy in a mixed gas of bosons (lithium-7) and fermions (lithium-6). The Fermi gas has been cooled to a temperature of 0.25 times the Fermi temperature by thermal collisions with the evaporatively cooled bosons. At this temperature, the spatial size of the gas is strongly affected by the Fermi pressure resulting from the Pauli exclusion principle and gives clear experimental evidence for quantum degeneracy.
Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Unlike the three-dimensional (3D) case, theories predict that in one dimension (1D) a state with FFLO correlations occupies a major part of the phase diagram. Here we report experimental measurements of density profiles of a two-spin mixture of ultracold (6)Li atoms trapped in an array of 1D tubes (a system analogous to electrons in 1D wires). At finite spin imbalance, the system phase separates with an inverted phase profile, as compared to the 3D case. In 1D, we find a partially polarized core surrounded by wings which, depending on the degree of polarization, are composed of either a completely paired or a fully polarized Fermi gas. Our work paves the way to direct observation and characterization of FFLO pairing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.