We present a novel method for estimating respiratory rate in real time from the photoplethysmogram (PPG) obtained from pulse oximetry. Three respiratory-induced variations (frequency, intensity, and amplitude) are extracted from the PPG using the Incremental-Merge Segmentation algorithm. Frequency content of each respiratory-induced variation is analyzed using fast Fourier transforms. The proposed Smart Fusion method then combines the results of the three respiratory-induced variations using a transparent mean calculation. It automatically eliminates estimations considered to be unreliable because of detected presence of artifacts in the PPG or disagreement between the different individual respiratory rate estimations. The algorithm has been tested on data obtained from 29 children and 13 adults. Results show that it is important to combine the three respiratory-induced variations for robust estimation of respiratory rate. The Smart Fusion showed trends of improved estimation (mean root mean square error 3.0 breaths/min) compared to the individual estimation methods (5.8, 6.2, and 3.9 breaths/min). The Smart Fusion algorithm is being implemented in a mobile phone pulse oximeter device to facilitate the diagnosis of severe childhood pneumonia in remote areas.
Functional near-infrared spectroscopy (fNIRS) is a powerful tool for monitoring brain functional activities. Due to its non-invasive and non-restraining nature, fNIRS has found broad applications in brain functional studies. However, for fNIRS to work well, it is important to reduce its sensitivity to motion artifacts. We propose a new wavelet-based method for removing motion artifacts from fNIRS signals. The method relies on differences between artifacts and fNIRS signal in terms of duration and amplitude and is specifically designed for spike artifacts. We assume a gaussian distribution for the wavelet coefficients corresponding to the underlying hemodynamic signal in detail levels and identify the artifact coefficients using this distribution. An input parameter controls the intensity of artifact attenuation in trade-off with the level of distortion introduced in the signal. The method only modifies wavelet coefficients in levels adaptively selected based on the degree of contamination with motion artifact. To demonstrate the feasibility of the method, we tested it on experimental fNIRS data collected from three infant subjects. Normalized mean-square error and artifact energy attenuation were used as criteria for performance evaluation. The results show 18.29 and 16.42 dB attenuation in motion artifacts energy for 700 and 830 nm wavelength signals in a total of 29 motion events with no more than -16.7 dB distortion in terms of normalized mean-square error in the artifact-free regions of the signal.
The circadian and sleep stage-specific effects on heart rate variability are clinically relevant and contribute to the understanding of the degree of cardiovascular vulnerability during sleep.
BackgroundSleep disordered breathing (SDB) can lead to daytime sleepiness, growth failure and developmental delay in children. Polysomnography (PSG), the gold standard to diagnose SDB, is a highly resource-intensive test, confined to the sleep laboratory.AimTo combine the blood oxygen saturation (SpO2) characterization and cardiac modulation, quantified by pulse rate variability (PRV), to identify children with SDB using the Phone Oximeter, a device integrating a pulse oximeter with a smartphone.MethodsFollowing ethics approval and informed consent, 160 children referred to British Columbia Children's Hospital for overnight PSG were recruited. A second pulse oximeter sensor applied to the finger adjacent to the one used for standard PSG was attached to the Phone Oximeter to record overnight pulse oximetry (SpO2 and photoplethysmogram (PPG)) alongside the PSG.ResultsWe studied 146 children through the analysis of the SpO2 pattern, and PRV as an estimate of heart rate variability calculated from the PPG. SpO2 variability and SpO2 spectral power at low frequency, was significantly higher in children with SDB due to the modulation provoked by airway obstruction during sleep (p-value ). PRV analysis reflected a significant augmentation of sympathetic activity provoked by intermittent hypoxia in SDB children. A linear classifier was trained with the most discriminating features to identify children with SDB. The classifier was validated with internal and external cross-validation, providing a high negative predictive value (92.6%) and a good balance between sensitivity (88.4%) and specificity (83.6%). Combining SpO2 and PRV analysis improved the classification performance, providing an area under the receiver operating characteristic curve of 88%, beyond the 82% achieved using SpO2 analysis alone.ConclusionsThese results demonstrate that the implementation of this algorithm in the Phone Oximeter will provide an improved portable, at-home screening tool, with the capability of monitoring patients over multiple nights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.