The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary edema, hypoxemia, and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma, and is present in ~10% of all intensive care unit patients worldwide. Despite some improvements over the past decades, mortality remains high at 30–40% in most studies. Pathologic specimens from patients with ARDS most frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory edema fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with recent proposed modifications for under-resourced settings and for pediatric patients. Patient management focuses on implementing a lung-protective ventilation strategy; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to suffer ongoing functional and/or psychologic sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, prognostic and/or predictive enrichment in clinical studies to identify responsive subsets, and ongoing efforts to understand fundamental mechanisms of lung injury that may respond to specific treatments.
The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.
Platelet-activating factor (PAF) is a phospholipid with potent, diverse physiological actions, particularly as a mediator of inflammation. The synthesis, transport, and degradation of PAF are tightly regulated, and the biochemical basis for many of these processes has been elucidated in recent years. Many of the actions of PAF can be mimicked by structurally related phospholipids that are derived from nonenzymatic oxidation, because such compounds can bind to the PAF receptor. This process circumvents much of the biochemical control and presumably is regulated primarily by the rate of degradation, which is catalyzed by PAF acetylhydrolase. The isolation of cDNA clones encoding most of the key proteins involved in regulating PAF has allowed substantial recent progress and will facilitate studies to determine the structural basis for substrate specificity and the precise role of PAF in physiological events.
Platelets release preformed mediators and generate eicosanoids that regulate acute hemostasis and inflammation, but these anucleate cytoplasts are not thought to synthesize proteins or cytokines, or to influence inflammatory responses over time. Interrogation of an arrayed cDNA library demonstrated that quiescent platelets contain many messenger RNAs, one of which codes for interleukin 1β precursor (pro–IL-1β). Unexpectedly, the mRNA for IL-1β and many other transcripts are constitutively present in polysomes, providing a mechanism for rapid synthesis. Platelet activation induces rapid and sustained synthesis of pro–IL-1β protein, a response that is abolished by translational inhibitors. A portion of the IL-1β is shed in its mature form in membrane microvesicles, and induces adhesiveness of human endothelial cells for neutrophils. Signal-dependent synthesis of an active cytokine over several hours indicates that platelets may have previously unrecognized roles in inflammation and vascular injury. Inhibition of β3 integrin engagement markedly attenuated the synthesis of IL-1β, identifying a new link between the coagulation and inflammatory cascades, and suggesting that antithrombotic therapies may also have novel antiinflammatory effects.
Platelets are specialized hemostatic cells that circulate in the blood as anucleate cytoplasts. We report that platelets unexpectedly possess a functional spliceosome, a complex that processes pre-mRNAs in the nuclei of other cell types. Spliceosome components are present in the cytoplasm of human megakaryocytes and in proplatelets that extend from megakaryocytes. Primary human platelets also contain essential spliceosome factors including small nuclear RNAs, splicing proteins, and endogenous pre-mRNAs. In response to integrin engagement and surface receptor activation, platelets precisely excise introns from interleukin-1beta pre-mRNA, yielding a mature message that is translated into protein. Signal-dependent splicing is a novel function of platelets that demonstrates remarkable specialization in the regulatory repertoire of this anucleate cell. While this mechanism may be unique to platelets, it also suggests previously unrecognized diversity regarding the functional roles of the spliceosome in eukaryotic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.