Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity.Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, <i>in situ</i> measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products.Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies.Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.
The present study aimed at estimating organ and effective doses from computed tomography (CT) scans of paediatric patients in three hospitals in Brazzaville, Congo Republic. A total of 136 data on paediatric patients, from 0.25 (3 months) to 15 years old, who underwent head, chest, abdomen – pelvis (AP) and chest – abdomen – pelvis (CAP) CT scans was considered.
The approach followed in the present study to compute organ doses was to use pre-calculated volume CT dose index (CTDIvol) – and 100 milliampere-second (mAs) – normalized organ doses determined by Monte Carlo (MC) simulation. Effective dose were then derived using the international commission on radiological protection (ICRP) publications 60 and 103 formalism. For comparison purposes, effective dose were also computed using dose-length product (DLP) – to – effective dose conversion factors. A relatively high variation in organ and effective doses was observed in each age group due to the dependence of patient dose on the practice of technicians who perform the CT scan within the same facility or from one facility to another, patient size and lack of adequate training of technicians. In the particular case of head scan, the brain and the eye lens were delivered maximum absorbed doses of 991.81 mGy and 1176.51 mGy, respectively (age group 10-15 y). The maximum absorbed dose determined for the red bone marrow was 246.08 mGy (age group 1-5 y). This is of concern as leukaemia and brain tumours are the most common childhood cancers and as the ICRP recommended absorbed dose threshold for induction of cataract is largely exceeded. Effective doses derived from MC calculations and ICRP publications 60 and 103 tissues weighting factors showed a 0.40-17.61 % difference while the difference between effective doses derived by the use of k- factors and those obtained by MC calculations ranges from 0.06 to 224.87 %. The study has shown that urgent steps should be taken in order to significantly reduce doses to paediatric patients to levels observed in countries where dose reduction techniques are successfully applied.
This paper describes the essential of the “Guide to the expression of Uncertainty in Measurement” Framework (GUMF) Method and Monte Carlo Method (MCM) for propagating uncertainties, with an application to Gabon results obtained during the 2018 International Atomic Energy Agency (IAEA) regional intercomparison exercise. The work has shown that the output quantity Hp (10) follows a lognormal distribution. The study has also shown that although the normal distribution does not best approximate the distribution of the output quantity Hp (10), it has been observed that its estimate, the associated standard uncertainty and the coverage interval determined by GUMF and MCM were close, meaning that the application of the GUMF could still be seen as valid. Finally, the results obtained by the two methods are in agreement with International Commission on Radiological Protection and IAEA requirements for overall accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.