Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease.
The molecular origin of standard metabolic rate and thermogenesis in mammals is examined. It is pointed out that there are important differences and distinctions between the cellular reactions that 1) couple to oxygen consumption, 2) uncouple metabolism, 3) hydrolyze ATP, 4) control metabolic rate, 5) regulate metabolic rate, 6) produce heat, and 7) dissipate free energy. The quantitative contribution of different cellular reactions to these processes is assessed in mammals. We estimate that approximately 90% of mammalian oxygen consumption in the standard state is mitochondrial, of which approximately 20% is uncoupled by the mitochondrial proton leak and 80% is coupled to ATP synthesis. The consequences of the significant contribution of proton leak to standard metabolic rate for tissue P-to-O ratio, heat production, and free energy dissipation by oxidative phosphorylation and the estimated contribution of ATP-consuming processes to tissue oxygen consumption rate are discussed. Of the 80% of oxygen consumption coupled to ATP synthesis, approximately 25-30% is used by protein synthesis, 19-28% by the Na(+)-K(+)-ATPase, 4-8% by the Ca2(+)-ATPase, 2-8% by the actinomyosin ATPase, 7-10% by gluconeogenesis, and 3% by ureagenesis, with mRNA synthesis and substrate cycling also making significant contributions. The main cellular reactions that uncouple standard energy metabolism are the Na+, K+, H+, and Ca2+ channels and leaks of cell membranes and protein breakdown. Cellular metabolic rate is controlled by a number of processes including metabolic demand and substrate supply. The differences in standard metabolic rate between animals of different body mass and phylogeny appear to be due to proportionate changes in the whole of energy metabolism. Heat is produced by some reactions and taken up by others but is mainly produced by the reactions of mitochondrial respiration, oxidative phosphorylation, and proton leak on the inner mitochondrial membrane. Free energy is dissipated by all cellular reactions, but the major contributions are by the ATP-utilizing reactions and the uncoupling reactions. The functions and evolutionary significance of standard metabolic rate are discussed.
Nitric oxide (NO) reversibly inhibited oxygen consumption of brain synaptosomes. Inhibition was reversible, occurred at the level of cytochrome oxidase, and was apparently competitive with oxygen, with half-inhibition by 270 nM NO at oxygen concentrations around 145 PM and by 60 nM NO at around 30 PM Oz. Isolated cytochrome oxidase was inhibited by similar levels of NO. These levels of NO are within the measured physiological and pathological range for a number of tissues and conditions, suggesting that NO inhibition of cytochrome oxidase and the competion with oxygen may occur in vivo.
Microglia, the brain's professional phagocytes, can remove dead and dying neurons as well as synapses and the processes of live neurons. However, we and others have recently shown that microglia can also execute neuronal death by phagocytosing stressed-but-viable neurons - a process that we have termed phagoptosis. In this Progress article, we discuss evidence suggesting that phagoptosis may contribute to neuronal loss during brain development, inflammation, ischaemia and neurodegeneration.
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.