SUMMARY
This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30°C. The corresponding maximum swimming speed(Umax), optimal swimming speed (Uopt),active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24°C. Above 24°C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and Umax and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COTnet) at a given speed was not influence by the elevation of the water temperature. Although Uopt doubled between 7°C and 30°C (from 0.3 to 0.6 m s-1), metabolic rate at Uopt represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.
Investigating the biological mechanisms linking environmental variability to fish production systems requires the disentangling of the interactions between habitat, environmental adaptation and fitness. Since the number of environmental variables and regulatory processes is large, straightening out the environmental influences on fish performance is intractable unless the mechanistic analysis of the 'fish-milieu' system is preceded by an understanding of the properties of that system. While revisiting the key points in our currently poorly integrated understanding of fish ecophysiology, we have highlighted the explanatory potential contained within Fry's (Fry 1947 Univ. Toronto Stud. Biol. Ser. 55, 1-62) concept of metabolic scope and categorization of environmental factors. These two notions constitute a pair of powerful tools for conducting an external (at the emerging property level) analysis of the environmental influences on fish, as well as an internal (mechanistic) examination of the behavioural, morphological and physiological processes involved. Using examples from our own and others work, we have tried to demonstrate that Fry's framework represents a valuable conceptual basis leading to a broad range of testable ecophysiological hypotheses.
The problem of understanding the effect of the environment on fish activities and performance, in any generalized way, remains intractable. Solving this issue is, however, a key to addressing contemporary environmental concerns. As suggested 20 years ago by W. H. Neill, the authors returned to the drawing board, using as a background the conceptual scheme initially proposed by F. E. J. Fry. They revisited the effect of ambient oxygen availability upon fish metabolism and clarified the definitions of limiting, critical and incipient lethal oxygen (ILO) levels. The concepts of oxy-conformer and oxy-regulator are revisited, and P. W. Hochachka's idea of scope for survival is explored. Finally, how the cardiovascular system contributes to the capacity of fishes to respond to the reduced oxygen availability is considered. Various hands-on recommendations and software (R scripts) are provided for researchers interested in investigating these concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.