A 1D global twin-screw extrusion model, implemented in numerical software, Ludovic®, was applied to predict extrusion variables and, therefore, to design various starchy products with targeted structure and properties. An experimental database was built with seven starchy food formulations for manufacturing dense and expanded foods made from starches, starch blends, breakfast cereals, pulse crop ingredients such as pea flour, fava bean flour, and fava bean starch concentrated, and wheat flour enriched with wheat bran. This database includes the thermal and physical properties of the formulations at solid and molten states, melt viscosity model, extruder configurations and operating parameters, and extruded foods properties. Using extrusion and viscosity models, melt temperature (T) and specific mechanical energy (SME) were satisfactorily predicted. A sensitivity analysis of variables at die exit was performed on formulation, extruder configuration, and operating parameters, generating the extruder operating charts. Results allowed the establishment of relationships between predicted variables (T, SME, melt viscosity) and product features such as starch and protein structural change, density and cellular structure, and functional properties. The extrusion operating conditions leading to targeted food properties can be assessed from these relationships and also the relationship between extrusion operating parameters and variables provided by simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.