Deep Sea Drilling Project hole 504B is located in 5.9 m.y. crust in the eastern Pacific Ocean about 200 km south of the Costa Rica Rift. At 1076 m subbasement, it is the deepest penetration of marine crust yet achieved. We present here magnetic data from this hole, especially from the recently cored leg 83 section (which constitutes the lowermost 500 m). These data, when combined with those of other studies, yield not only the deepest but also the most detailed and comprehensive picture of marine magnetic structure at a single site currently available. The basement rocks from hole 504B can be divided into three major magnetic units. The upper units (the top 500 m or so of basement) are essentially similar to other shallow marine basement sections, consisting of a mixture of various types of extrusive basalt. Low‐temperature altered titanomagnetite is the dominant magnetic carrier, and the magnetic properties of these rocks are comparable to other shallow marine basalts. Below the upper units is a 200‐m transition zone, consisting of a mixture of extrusives and dikes. High‐temperature hydrothermal alteration (much of it greenschist facies grade) has caused oxidation‐exsolution of primary titanomagnetite as well as its partial or total replacement by silicates. The dominant magnetic carrier is an Fe‐rich titanomagnetite, magnetically indistinguishable from pure magnetite. The combination of oxidation‐exsolution and silicate replacement results in a very low natural remanent magnetization (NRM). The remaining 300 m are in the upper portion of the sheeted dike complex. Primary titanomagnetite is exsolved, but alteration is less intense than in the transition zone. NRM values are substantially higher than those of the transition zone, due to less silicate replacement of primary titanomagnetite coupled with an uncertain contribution from secondary magnetite (which occurs as a silicate alteration product). The NRM magnitude is sufficiently high that the sheeted dike complex, in this location at least, may make a significant if not substantial contribution to the magnetic anomaly. Overall, the magnetic properties of this hole, especially the lower 500 m, are strongly influenced by postemplacement alteration and may bear little or no resemblance to their values upon initial cooling. As hydrothermal temperatures do not appear to have exceeded 400°C, the NRM in the lower two sections is apparently a chemical rather than a thermal remanence. As such, models of marine magnetic structure that combine cooling models of the crust with the assumption that magnetic remanence is purely of thermal origin do not appear sufficient to adequately predict the properties of the deeper crust. A better understanding of the nature of postemplacement alteration in the marine crust is required, especially its characteristics at high temperatures, and its effects on magnetic properties.
This study details the Late Cretaceous and Tertiary northward movement of the Indian plate. Breaks in India's northward movement rate are identified, dated, and correlated with the evolution of the India-Asia convergence. Paleolatitudinal constraints on the origin of Ninetyeast Ridge are discussed, and limited magnetostratigraphic detail is provided.Nearly 1500 sediment and basement samples from Sites 756, 757, and 758 on Ninetyeast Ridge were studied through detailed alternating field and thermal demagnetization. Primary and various secondary magnetization components were identified. Breakpoint intervals in the primary paleolatitude pattern for common-Site 758 were identified at 2. 7, 6.7,18.5, about 53, 63.5-67, and 68-74.5 Ma. Only the breakpoint interval at about 53 Ma reliably reflects a reduction in India's northward movement rate. The onset of this probably gradual slowdown was dated at 55 Ma (minimal age) based on the intersection of weighted linear regression lines. At the location of common-Site 758, northward movement slowed from 18-19.5 cm/yr (from at least 65 to 55 Ma) to 4.5 cm/yr (from 55 to at least 20 Ma). Reanalysis of earlier DSDP/ODP paleolatitude data from the Indian plate gives a comparable date (53 Ma) for this reduction in northward velocity.Comparison of our Ninetyeast Ridge data and Himalayan paleomagnetic data indicates that the initial contact of Greater India and Asia may have already been established by Cretaceous/Tertiary boundary time. The geological record of the convergence zone and the Indian plate supports the notion that the Deccan Traps extrusion may have resulted from the ensuing deformation of the Indian plate. We interpret the breakpoint at 55+ Ma to reflect completion of the eastward progressive India-Asia suturing process.Neogene phases in the evolution of the convergence zone were correlated with significant changes in the susceptibility, NRM intensity, and lithostratigraphic profile of Site 758. These changes are interpreted to reflect and postdate tectonic phases in the evolution of the wider Himalayan and southern Tibetan region. The changes were dated and interpreted as follows: 17.5 Ma, initial uplift of the Higher Himalaya following initiation of intercontinental underthrusting; 10-10.4 Ma, increased uplift and onset of Middle Siwaliks sedimentation; 8.8 Ma, probable reduction in influx corresponding with the Nagri Formation to Dhok Pathan Formation changeover; 6.5 Ma, major tectonic phase evident throughout the wider Himalayan region and northern Indian Ocean; 5.1-5.4 Ma, onset of oroclinal bending of the Himalayan Arc, of extensional tectonism in southern Tibet, and of Upper Siwalik sedimentation; 2.5-2.7 and 1.9 Ma, major phases of uplift of the Himalayan and Tibetan region culminating in the present-day high relief.The basal ash sequence and upper flow sequence of Site 758 and the basal ash sequence of Site 757 indicate paleolatitudes at about 50°S. These support a Kerguelen hot spot origin for Ninetyeast Ridge. Consistently aberrant inclinations in the basa...
Ten samples of gabbro and peridotite, with varying degrees of serpentinization, were studied by magnetic techniques and reflected light microscopy. Evidence from these methods suggests that the natural remanent magnetization is primarily of chemical origin. It is generally weak for the gabbros and much stronger for the peridotites. This difference is offset by the fact that the peridotites have generally lower magnetic stability and Koenigsberger ratios. There is a considerable variation in both magnetic parameters and petrology even among closely spaced samples, which suggests that some combination of source heterogeneity and tectonic mixing was involved in the production of these rocks. However, the small number of samples makes this conclusion tentative. There may also have been significant postemplacement alteration involved. All samples show a significant anisotropy of weak field susceptibility that appears to be related to deformation. This anisotropy may be useful in defining petrofabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.