The purpose of this study was to compare the main kinematic, kinetic, and dynamic parameters of elite and well-trained sprinters during the starting block phase and the 2 subsequent steps. Six elite sprinters (10.06-10.43 s/100 m) and 6 well-trained sprinters (11.01-11.80 s/100 m) equipped with 63 passive reflective markers performed 4 maximal 10 m sprint starts on an indoor track. An opto-electronic motion analysis system consisting of 12 digital cameras (250 Hz) was used to record 3D marker trajectories. At the times "on your marks," "set," "clearing the block," and "landing and toe-off of the first and second step," the horizontal position of the center of mass (CM), its velocity (XCM and VCM), and the horizontal position of the rear and front hand (X(Hand_rear) and X(Hand_front)) were calculated. During the pushing phase on the starting block and the 2 first steps, the rate of force development and the impulse (F(impulse)) were also calculated. The main results showed that at each time XCM and VCM were significantly greater in elite sprinters. Moreover, during the pushing phase on the block, the rate of force development and F(impulse) were significantly greater in elite sprinters (respectively, 15,505 +/- 5,397 N.s and 8,459 +/- 3,811 N.s for the rate of force development; 276.2 +/- 36.0 N.s and 215.4 +/- 28.5 N.s for F(impulse), p < or = 0.05). Finally, at the block clearing, elite sprinters showed a greater XHand_rear and X(Hand_front) than well-trained sprinters (respectively, 0.07+/- 0.12 m and -0.27 +/- 0.36 m for X(Hand_rear); 1.00 +/- 0.14 m and 0.52 +/- 0.27 m for X(Hand_front); p < or = 0.05). The muscular strength and arm coordination appear to characterize the efficiency of the sprint start. To improve speed capacities of their athletes, coaches must include in their habitual training sessions of resistance training.
The aim of this study was to test the influence of 3 different horizontal distances between the blocks (bunched, medium and elongated) on the velocity of the centre of mass (VCM) and the kinetic energy (KE) of the body segments and of the whole body. 9 well-trained sprinters performed 4 maximal 10 m sprints. An opto-electronic Motion Analysis® system (12 digital cameras 250 Hz) was used to collect the 3D trajectories of 63 markers during the starting block phase. The results demonstrated that the elongated start, compared to the bunched or medium start, induced an increase of VCM at block clearing (2.89±0.13; 2.76±0.11; 2.84±0.14 m.s - 1) and a decrease of the performance at 5 and 10 m. Both results were explained by a greater pushing time on the blocks in the elongated condition. During the starting block phase, the KE of the whole body was greater in the elongated start (324.3±48.0 J vs. 317.4±57.2 J, bunched and 302.1±53.2 J, medium). This greater KE of the whole body was mainly explained by the KE of the head-trunk segments. Thus, to improve the efficiency of the starting block phase, the athlete must produce greater KE of the head and trunk segments in the shortest time.
Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.