In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the integration of green chemistry and green engineering into the pharmaceutical industry. The Roundtable has developed a list of key research areas. The purpose of this perspective is to summarise how that list was agreed, provide an assessment of the current state of the art in those areas and to highlight areas for future improvement.
Process
development of the synthesis of the orally active poly(ADP-ribose)polymerase
inhibitor niraparib is described. Two new asymmetric routes are reported,
which converge on a high-yielding, regioselective, copper-catalyzed N-arylation of an indazole derivative as the late-stage
fragment coupling step. Novel transaminase-mediated dynamic kinetic
resolutions of racemic aldehyde surrogates provided enantioselective
syntheses of the 3-aryl-piperidine coupling partner. Conversion of
the C–N cross-coupling product to the final API was achieved
by deprotection and salt metathesis to isolate the desired crystalline
salt form.
[reaction: see text] The reaction of a variety of indoles with N-thioalkyl- and N-thioarylphthalimides to produce 3-thioindoles is reported. Catalytic quantities of halide-containing salts are crucial to the success of this reaction. This highly efficient reaction provides sulfenylated indoles from bench-stable, readily available starting materials in good to excellent yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.